matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikVerständnisproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stochastik" - Verständnisproblem
Verständnisproblem < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisproblem: Frage1
Status: (Frage) beantwortet Status 
Datum: 10:24 Mi 05.10.2005
Autor: svenchen

Hallo, musste grade leider festsetllen, dass ich eine ganz Grundlegende Aufgabe nicht verstehe.

Also:

Aus 10 Bildern soll ein Plakat hergestellt werden.  Allerdings ist der Platz des Plakates begrenzt, da es nur Platz für 6 Bilder hat. Wieviele Plakatkombinationen sind denkbar, wenn jedes der 10 Bilder beliebig oft kopiert werden kann (mit zurücklegen, Reihenfolge der Bilder ist unwichtig)?

Hier betrachtet man eineGesamtmenge N (10 Bilder) aus denen k Bilder (6 Bilder) angeordnet werden sollen. Also gibt es "15 über  6" Möglichkeiten.



Diese Aufgabe ist mir klar, jedoch schaffe ich es nicht dieses Prinzip auf folgende Aufgabe zu übertragen:

In einer Urne befinden sich 7 verschiedene Kugeln. Es werden 20 Kugeln mit zurücklegen entnommen. Wieviele Kombinationen sind denkbar?

Was ist hier die Gesamtmenge? Müssten ja wohl die 7 Kugeln sein. Nur wenn ich das dann ausrechne mit N = 7 und k = 20 komme ich auf kein vernünftiges Ergebnis.

Könnte mir einer erklären, wie solche Aufgabentypen funktionieren?

        
Bezug
Verständnisproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 05.10.2005
Autor: Zwerglein

Hi, svenchen,

> Aus 10 Bildern soll ein Plakat hergestellt werden.  
> Allerdings ist der Platz des Plakates begrenzt, da es nur
> Platz für 6 Bilder hat. Wieviele Plakatkombinationen sind
> denkbar, wenn jedes der 10 Bilder beliebig oft kopiert
> werden kann (mit zurücklegen, Reihenfolge der Bilder ist
> unwichtig)?
>  
> Hier betrachtet man eineGesamtmenge N (10 Bilder) aus denen
> k Bilder (6 Bilder) angeordnet werden sollen. Also gibt es
> "15 über  6" Möglichkeiten.

Wenn mit der Aufgabe gemeint ist, dass auf dem Plakat ein- und dasselbe Bild auch mehrfach auftreten darf, dann hast Du Recht!

>
> Diese Aufgabe ist mir klar, jedoch schaffe ich es nicht
> dieses Prinzip auf folgende Aufgabe zu übertragen:
>  
> In einer Urne befinden sich 7 verschiedene Kugeln. Es
> werden 20 Kugeln mit zurücklegen entnommen. Wieviele
> Kombinationen sind denkbar?
>  
> Was ist hier die Gesamtmenge? Müssten ja wohl die 7 Kugeln
> sein. Nur wenn ich das dann ausrechne mit N = 7 und k = 20
> komme ich auf kein vernünftiges Ergebnis.

Mit "Kombinationen" ist ja gemeint, dass auch hier die Reihenfolge der gezogenen Kugeln keine Rolle spielen soll.

Hier gilt dann die Formel, die Du auch bei Deiner ersten Aufgabe verwendet hast:  [mm] \vektor{N+k-1 \\ k}, [/mm]
wobei N die Anzahl der verschiedenen Kugeln in der Urne und k die Anzahl der Elemente in den Kombinationen darstellt. Dabei komme ich auf 230230 Möglichkeiten.

Zu Deiner Frage, "wie solche Aufgabentypen funktionieren" ist zu sagen, dass es gerade in der Kombinatorik oft nicht ganz leicht ist, die richtige Formel zu erwischen.
Wichtig ist zunächst:
1. Kommt's auf die Reihenfolge der Elemente an oder nicht?
Wenn nicht, handelt sich's um Kombinationen und bei diesen ist irgendwie die Formel "n über k" im Spiel.
Wenn ja, sind's Variationen.
2. Können sich die Elemente wiederholen (Ziehen mit Zurücklegen) oder nicht (Ziehen ohne Z.)
Bei Variationen ergeben sich daraus die Formeln
[mm] n^{k} [/mm] (Ziehen mit Z.)
bzw.
[mm] \bruch{n!}{(n-k)!} [/mm] (Ziehen ohne Z.)

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]