matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisVerständnisfrage betrag
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - Verständnisfrage betrag
Verständnisfrage betrag < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Fr 05.03.2010
Autor: Surfer

hallo ich habe gerade wieder ein Verständnisproblem.
Wenn ich einen Term im Betrag habe wie z.B. |x-6| muss ich doch immer eine Fallunterscheidung machen in dem Fall für x<6 und x>6. Ändert sich das Vorzeichen der Zahl 6 im Term mit wenn ich sage für x<6 gilt -x+6  und für x>6 gilt x-6 oder wird nur das Vorzeichen von x immer verändert?

lg Surfer

        
Bezug
Verständnisfrage betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Fr 05.03.2010
Autor: M.Rex

Hallo

Schau dir mal die Definition des MBBetrag einer reellen Zahl an.

Also musst du hier folgende Fälle Unterscheiden:

1. Fall: $ [mm] x-6\ge0\Rightarrow|x-6|=x-6 [/mm] $
2. Fall: $ [mm] x-6<0\Rightarrow|x-6|=-(x-6)=-x+6 [/mm] $

Marius

Bezug
                
Bezug
Verständnisfrage betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 05.03.2010
Autor: Surfer

Ok danke dir, aber wie schaut das aus, wenn ich es so dastehen habe: -|x-6| ???

lg Surfer

Bezug
                        
Bezug
Verständnisfrage betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Fr 05.03.2010
Autor: steppenhahn

Hallo,

> Ok danke dir, aber wie schaut das aus, wenn ich es so
> dastehen habe: -|x-6| ???

Na einfach entsprechend:

Falls $x-6 < 0$ ist $|x-6| = -(x-6)$, also ist dann $-|x-6| = -(-(x-6)) = x-6$.

Falls $x-6 [mm] \ge [/mm] 0$ ist $|x-6| = x-6$, also ist dann $-|x-6| = -(x-6) = 6-x$

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]