matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationVerstaendnisfrage bei Flaeche
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Verstaendnisfrage bei Flaeche
Verstaendnisfrage bei Flaeche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verstaendnisfrage bei Flaeche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Mo 01.06.2009
Autor: royalbuds

Aufgabe
Berechnen Sie die von den angegebenen Funktionen eingeschlossene (endliche) Fläche

i) $xy = 4, x = 1, x = 4, y = 0$
ii) [mm] $4(y^2 [/mm] - [mm] x^2) [/mm] + [mm] x^3 [/mm] = 0$

Hallo,

ich verstehe hier nicht welche Flaeche gemeint ist. Bei i) ist es ja noch ganz klar. Die Flaeche kann man ja noch gut zeichnen und sich vorstellen da hier ja auch noch Grenzen angegeben sind.
Die ii) finde ich etwas komisch. Hier sind ja nicht mal Grenzen angegeben.
Ist bei der Aufgabe die Flaeche gemeint, die im ersten Quadranten von i) und ii) gleichzeitig eingeschlossen werden?

Das hab ich nun einfach mal angenommen und folgendes gemacht:

$xy=4$ habe ich umgestellt und habe nun $f(x) = [mm] \frac{4}{x}$, [/mm] das kann man ja mit den Grenzen gut integrieren.
[mm] $4(y^2 [/mm] - [mm] x^2) [/mm] + [mm] x^3 [/mm] = 0$ habe ich nach [mm] $\pm y=\wurzel{x^2-\frac{x^3}{4}}$ [/mm] umgestellt.

Reicht es nun einfach die beiden Funktionen in dem Intervall [1,4] zu integrieren und voneinander abzuziehen?

Gruss

        
Bezug
Verstaendnisfrage bei Flaeche: Ideen
Status: (Antwort) fertig Status 
Datum: 14:14 Mo 01.06.2009
Autor: weightgainer

Hallo,

> Berechnen Sie die von den angegebenen Funktionen
> eingeschlossene (endliche) Fläche
>  
> i) [mm]xy = 4, x = 1, x = 4, y = 0[/mm]
>  ii) [mm]4(y^2 - x^2) + x^3 = 0[/mm]
>  

>  
> [mm]xy=4[/mm] habe ich umgestellt und habe nun [mm]f(x) = \frac{4}{x}[/mm],
> das kann man ja mit den Grenzen gut integrieren.
>  [mm]4(y^2 - x^2) + x^3 = 0[/mm] habe ich nach [mm]\pm y=\wurzel{x^2-\frac{x^3}{4}}[/mm]
> umgestellt.
>  
> Reicht es nun einfach die beiden Funktionen in dem
> Intervall [1,4] zu integrieren und voneinander abzuziehen?
>  
> Gruss  

Ich verstehe das eigentlich als zwei getrennte Aufgaben.
In (i) machst du ja eigentlich schon alles, was nötig ist und kannst mit dem Integral die eingeschlossene Fläche berechnen.

In (ii) formst du richtig um und bekommst mit [mm]y=\pm\wurzel{x^2-\frac{x^3}{4}}[/mm] zwei Funktionen, die auch eine Fläche einschließen. Da die beiden natürlich symmetrisch zur x-Achse sind, kannst du also durch das Integral über eine der beiden Funktionen die Hälfte dieser Fläche berechnen. Wegen dieser Symmetrie schließen die beiden aber nur dann eine Fläche ein, wenn sie die x-Achse schneiden (wenn du das mal zeichnen lässt, wird das klar, denke ich). Also kannst du mit diesen Schnittpunkten die Integrationsgrenzen finden.
[Dateianhang nicht öffentlich]

Gruß,
weightgainer


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Verstaendnisfrage bei Flaeche: unabh. Aufgaben / keine Funkt.
Status: (Antwort) fertig Status 
Datum: 14:58 Mo 01.06.2009
Autor: Al-Chwarizmi


> Berechnen Sie die von den angegebenen Funktionen
> eingeschlossene (endliche) Fläche
>  
> i) [mm]xy = 4, x = 1, x = 4, y = 0[/mm]
>  ii) [mm]4(y^2 - x^2) + x^3 = 0[/mm]
>  
> Hallo,
>  
> ich verstehe hier nicht welche Flaeche gemeint ist. Bei i)
> ist es ja noch ganz klar. Die Flaeche kann man ja noch gut
> zeichnen und sich vorstellen da hier ja auch noch Grenzen
> angegeben sind.
>  Die ii) finde ich etwas komisch. Hier sind ja nicht mal
> Grenzen angegeben.
>  Ist bei der Aufgabe die Flaeche gemeint, die im ersten
> Quadranten von i) und ii) gleichzeitig eingeschlossen
> werden?



Die Aufgabenstellung ist wirklich nicht besonders gut
formuliert. Es wird nicht wirklich klar, dass es sich bei
den Teilen  i)  und  ii)  um zwei getrennte Aufgaben
handeln soll.

Zudem sind (in beiden Aufgaben) gar nicht Funktionen,
sondern Gleichungen bzw. Relationen für Punkte (x,y) in
der Ebene gegeben.  Ich würde dich gerne bitten, die
Lehrkraft auf diesen begrifflichen Fehler hinzuweisen,
denn der Begriff der Funktion ist doch in der Mathematik
ein wirklich grundlegender, den man insbesondere korrekt
verwenden soll, wenn man Mathe lehrt.

Die Gleichung in  ii)  ist, wie weightgainer schon erklärt
hat, eine Kurve, die mit ihrer Schleife ein endliches
Flächenstück umschliesst, dessen Flächeninhalt man
berechnen kann - so wie man auch den Flächeninhalt
eines Kreises (besser gesagt der Kreisscheibe, die vom
Kreis umschlossen wird) berechnet.

LG     Al-Chw.
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]