matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenVerständnisfrage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Verständnisfrage
Verständnisfrage < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Fr 31.10.2008
Autor: Hanz

Hallo,
ich habe mal eine Verständnisfrage zu den komplexen Zahlen und zwar steht bei Wikipedia:
[mm] "\IC [/mm] ist im Gegensatz zu [mm] \IR [/mm] kein geordneter Körper, d. h., es gibt keine mit der Körperstruktur verträgliche Ordnungsrelation „<“ auf [mm] \IC. [/mm] Von zwei unterschiedlichen komplexen Zahlen kann man daher nicht sagen, welche von beiden die größere bzw. die kleinere Zahl ist."

Wenn ich aber zwei komplexe Zahlen habe z.B.
5+4i und 5+10i, warum kann ich dann nicht sagen, dass 5+4i < 5+10i ist?
Im Prinzip ist i doch [mm] \wurzel{-1} [/mm] und hat also einen festen Wert.

Wenn man keine Ordnungsrelationen verwenden kann, dann gibt es auch keine Ungleichungen mit komplexen Zahlen?

Hat jemand vllt. noch eine gute/einfache Erklärung, wie man sich die komplexen Zahlen genau vorstellen kann?

        
Bezug
Verständnisfrage: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Fr 31.10.2008
Autor: Event_Horizon

Hallo!

Komplexe Zahlen sind zweidimensionale Objekte, denn sie bezeichen ja z.B. Koordinaten in der Gaußschen Zahlenebene.



Du kannst dir nun verschiedene Sachen einfallen lassen, wann eine Zahl größer als die andere ist.

Betrachte [mm] z_1=a_1+ib_1 [/mm] und [mm] z_2=a_2+ib_2 [/mm]


Wie wäre es damit:
[mm] z_1 Doch halt, damit bastelst du dir deine Ungleichung basierend auf Ungleichungen zweier Reeller Zahlen.

Oder das:

[mm] z_1 Aber auch hier rechnest du eigentlich nur mit den reellen Beträgen

Oder die Fläche eines Rechtecks mit den Seiten a und b:


[mm] z_1 Aber auch hier entscheidest du das ja nur an reellen Zahlen.



Du siehst, du könntest dir zwar verschiedene Möglichkeiten einfallen lassen, die basieren aber immer nur auf Vergleiche in [mm] \IR [/mm] , und sind zudem willkürlich von dir gewählt. Es gibt keine natürliche, zwingende Reihenfolge bei komplexen Zahlen.

Du wirst zwar Ungleichungen mit komplexen Zahlen vorfinden, bei genauer Betrachtung wirst du aber feststellen, daß diese - sofern sie sinnvoll sind - doch irgendwie nur auf die reellen Komponenten abzielen.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]