matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieVerschiedene Fragen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Verschiedene Fragen
Verschiedene Fragen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Di 13.10.2009
Autor: Leni-H

Hallo!

Ich bin gerade dabei, einen Beweis zu verstehen und habe einige einzelne Fragen, von denen ich hoffe, dass ihr sie beantworten könnt:

1) Wenn ich weiß, dass [mm] c^{\bruch{p-1}{2}} \equiv [/mm] 1 (mod p), wie folgt dann induktiv, dass [mm] c^{\bruch{(p-1)p^{a-1}}{2}} \equiv [/mm] 1 (mod [mm] p^{a})? [/mm]
In dem Beweis steht nur, dass das induktiv leicht folgt, aber ich komm nicht drauf wie und warum!?

2) Wenn ich weiß, dass c quadratischer Rest modulo [mm] 2^{a_{0}} [/mm] und c auch quadratischer Rest modulo [mm] p_{j}^{a_{j}} [/mm] für alle j, wieso gilt dann auch, dass c quadratischer Rest modulo [mm] m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}} [/mm]
Wie kann man das folgern???

Vielen Dank für eure Bemühungen!

LG Leni

        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Di 13.10.2009
Autor: felixf

Hallo!

> 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> p), wie folgt dann induktiv, dass
> [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  In dem Beweis steht nur, dass das induktiv leicht folgt,
> aber ich komm nicht drauf wie und warum!?

Du machst Induktion nach $a$. Der Anfang mit $a = 1$ ist die Voraussetzung, dir fehlt also der Induktionsschritt.

Du weisst, dass [mm] $c^{(p - 1) p^{a-1}/2} \equiv [/mm] 1 [mm] \pmod{p^a}$ [/mm] ist, also ist [mm] $c^{(p - 1) p^{a-1}/2} [/mm] = 1 + k [mm] p^a \pmod{p^{a+1}}$ [/mm] mit $k [mm] \in \{ 0, \dots, p-1 \}$. [/mm] Jetzt willst du das ganze hoch $p$ nehmen, um zu zeigen, dass [mm] $c^{(p - 1) p^a/2} [/mm] = [mm] (c^{(p - 1) p^{a-1}/2})^p \equiv [/mm] 1 [mm] \pmod{p^{a+1}}$ [/mm] ist.

> 2) Wenn ich weiß, dass c quadratischer Rest modulo
> [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]

Chinesischer Restsatz.

LG Felix


Bezug
                
Bezug
Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 13.10.2009
Autor: Leni-H

Vielen Dank erstmal!
>  
> > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > p), wie folgt dann induktiv, dass
> > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  In dem Beweis steht nur, dass das induktiv leicht
> folgt,
> > aber ich komm nicht drauf wie und warum!?
>  
> Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> Voraussetzung, dir fehlt also der Induktionsschritt.
>  
> Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> ist.

Aber wenn ich dann das Ganze hoch p nehme, hab ich ja [mm] (1+kp^{a})^{p}. [/mm] Und wieso ergibt das dann 1?

>  
> > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
>  
> Chinesischer Restsatz.
>  
> LG Felix
>  


Bezug
                        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 13.10.2009
Autor: felixf

Hallo!

> > > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > > p), wie folgt dann induktiv, dass
> > > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  >  In dem Beweis steht nur, dass das induktiv leicht
> > folgt,
> > > aber ich komm nicht drauf wie und warum!?
>  >  
> > Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> > Voraussetzung, dir fehlt also der Induktionsschritt.
>  >  
> > Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> > ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> > mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> > hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> > ist.
>  
> Aber wenn ich dann das Ganze hoch p nehme, hab ich ja
> [mm](1+kp^{a})^{p}.[/mm] Und wieso ergibt das dann 1?

Na, es ist doch $(1 + k [mm] p^a)^p [/mm] = [mm] \sum_{i=0}^p \binom{p}{i} k^i p^{i a}$. [/mm] Jetzt schau dir alle Summanden getrennt an. Der erste ist offensichtlich 1. Jetzt ueberleg dir, warum alle anderen durch [mm] $p^{a + 1}$ [/mm] teilbar sind und somit 0 modulo [mm] $p^{a + 1}$ [/mm] sind.

LG Felix


Bezug
                
Bezug
Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mi 14.10.2009
Autor: Leni-H

Hi!

Ich habe nochmal eine kleine Frage zu 2):

>  
> > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > p), wie folgt dann induktiv, dass
> > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  In dem Beweis steht nur, dass das induktiv leicht
> folgt,
> > aber ich komm nicht drauf wie und warum!?
>  
> Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> Voraussetzung, dir fehlt also der Induktionsschritt.
>  
> Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> ist.
>  
> > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
>  
> Chinesischer Restsatz.

Wie folgt das genau mit dem Chinesischen Restsatz?? Kann ich das folgendermaßen begründen: c ist ein Quadrat im Ring [mm] \IZ|m\IZ, [/mm] weil c ein Quadrat in den Ringen [mm] \IZ|2^{a_{0}}\IZ, \IZ|p_{j}\IZ [/mm] für alle j ist und es einen Isomorphismus von [mm] \IZ|2^{a_{0}}\IZ [/mm] x [mm] \IZ|p_{1}\IZ [/mm] x [mm] \IZ|p_{2}\IZ [/mm] x .... nach [mm] \IZ|m\IZ [/mm] gibt?
Oder wie genau kann man das mit dem Chinesischen Restsatz begründen?

Danke!

LG Leni

>  
> LG Felix
>  


Bezug
                        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Do 15.10.2009
Autor: felixf

Hallo!

> > > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
> >  

> > Chinesischer Restsatz.
>  
> Wie folgt das genau mit dem Chinesischen Restsatz?? Kann
> ich das folgendermaßen begründen: c ist ein Quadrat im
> Ring [mm]\IZ|m\IZ,[/mm] weil c ein Quadrat in den Ringen
> [mm]\IZ|2^{a_{0}}\IZ, \IZ|p_{j}\IZ[/mm] für alle j ist und es einen
> Isomorphismus von [mm]\IZ|2^{a_{0}}\IZ[/mm] x [mm]\IZ|p_{1}\IZ[/mm] x
> [mm]\IZ|p_{2}\IZ[/mm] x .... nach [mm]\IZ|m\IZ[/mm] gibt?
>  Oder wie genau kann man das mit dem Chinesischen Restsatz
> begründen?

Fast. Wenn du [mm] $p_1, p_2, \dots$ [/mm] jetzt noch durch [mm] $p_1^{a_1}, p_2^{a_2}, \dots$ [/mm] ersetzt, dann stimmt es.

(Modulo wird uebrigens als / und nicht | geschrieben.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]