matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVerknüpfung von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Verknüpfung von Funktionen
Verknüpfung von Funktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung von Funktionen: Brauch nen Tipp
Status: (Frage) überfällig Status 
Datum: 11:53 So 20.04.2008
Autor: feder

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Sei E = [mm] \IR^2[/mm]  der euklidische Standardraum der zweiten Dimension
Gegeben ist die Drehung:
f(x) =  A [mm] \cdot [/mm]  x + b  mit [/mm]

A = [mm] \begin{pmatrix} \cos x & - \sin x \\ \sin x & \cos x \end{pmatrix} [/mm]
wobei [mm] b\in \IR^2 [/mm] und x nicht [mm] \in\\2\pi\IZ [/mm]


Die Aufgabe lautet:

Ist [mm] \Phi [/mm] : [mm] \IR^2 [/mm] -> E ein euklidisches Koordinatensystem mit Ursprungspunkt y (d.h. [mm] \Phi(0) [/mm] = y)
so ist die Abbildung f' : [mm] \IR^2 [/mm] -> [mm] \IR^2, [/mm]
f' := [mm] \Phi^{-1} [/mm] ° f ° [mm] \Phi [/mm] von der Form

f'(x) = A' [mm] \cdot [/mm] x, A' =  [mm] \begin{pmatrix} \cos x' & - \sin x' \\ \sin x' & \cos x' \end{pmatrix} [/mm]
und x' = [mm] \pm [/mm] x

Anmerkung: (y ist gleichzeitig der Fixpunkt der Drehung mit den Koordinaten[mm]\ y= (I - A)^{-1} * b [/mm]

Ich hab bis jetzt folgendes

[mm] \Phi (x) = x-y \qquad [/mm]
Da der Ursprungspunkt verschoben ist um y
[mm] \Phi ^-1 (x) = x+y \qquad[/mm]
die Umkehrfunktion
[mm] y = (I-A)^{-1} * b \qquad [/mm]
Die Koordinaten von y
[mm] [/mm]

[mm] \begin{matrix} f'(x) &=& A(x-y) + b + y \\ \ & =& Ax - Ay +y +b \\ \ & =& Ax + (I-A)y +b\qquad | y={(I-A)}^{-1} * b \\ \ & =& Ax + 2b \end{matrix} [/mm]

Nur sollte am Ende  das 2b nicht wegfallen ? und warum ist [mm] x' = \pm x [/mm]
?

        
Bezug
Verknüpfung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 So 20.04.2008
Autor: feder

Wäre echt gut wenn jemand mal nen Tip hätte wo mein Fehler ist.
Bin mir eigentlich auch nicht besonders sicher das das was ich bisher
hab richtig ist, bzw. ob ich überhaupt die aufgabe richtig verstanden habe...


Bezug
        
Bezug
Verknüpfung von Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Do 24.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]