matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisVerknüpfung von Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Verknüpfung von Abbildungen
Verknüpfung von Abbildungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung von Abbildungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 28.10.2006
Autor: Esra

Hallo Leute  ,

ich habe ein problem mit einer Aufgabe und komme nicht vorran

kann mir da vielleeicht jemand helfen

undzwar geht um die Verknüpfungen von Abbildungen

Sei f: [mm] \IR\to\IR [/mm] , [mm] x\mapstox^{2.5}-5x [/mm] plus 9. Bestimme eine Menge [mm] A\subset\IR [/mm] mit [mm] (3,\infty)\subset [/mm] A, so dass zu f|A eine Umkehrfkt existiert. Zeichne den Graphen von f, f|A und ( f|A) hoch minus 1.

Was allgemein die Abbildungen angeht ist mir klar aber ich weiß nicht was ich wie anwenden kann.

Ich würde mich sehr freuen, wenn mir da jemand helfen kann.

Danke im Vorraus
LG Esra


        
Bezug
Verknüpfung von Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Sa 28.10.2006
Autor: angela.h.b.

  
> Sei f: [mm]\IR\to\IR[/mm] , [mm]x\mapsto x^{2.5}-5x[/mm] + 9.

>Bestimme eine Menge [mm]A\subset\IR[/mm] mit[mm](3,\infty)\subset[/mm] A, so dass zu f|A

> eine Umkehrfkt existiert.
> Zeichne den Graphen von f, f|A und ( f|A) hoch minus 1.


> Was allgemein die Abbildungen angeht ist mir klar aber ich
> weiß nicht was ich wie anwenden kann.

Hallo,

was Du mit "Was allgemein die Abbildungen angeht ist mir klar" ist mir unklar. Vielleicht kann ich Dir trotzdem helfen.

Du hast eine Funktion gegeben.

Gesucht ist eine Menge A, welche das Intervall [mm] (3,\infty) [/mm] enthält und auf welchem die Funktion f umkehrbar ist.

Deine Aufgabe ist also, einen Bereich zu finden, in welchem f bijektiv ist.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]