matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVerknüpfung auf eine Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Verknüpfung auf eine Menge
Verknüpfung auf eine Menge < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung auf eine Menge: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:02 Mi 14.12.2011
Autor: buurcu02

Aufgabe
Gibt es eine Verknüpfung ⋅ auf M:={1,2,3,4} derart, dass (M,⋅) eine Gruppe ist und die folgenden Gleichungen gelten:
1⋅1=2,2⋅2=1⋅3,3⋅3=1⋅4?

ICh brauche ansätze, weil ich hier überhaupt nicht weiterkomme..
vielen dank :)


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/Verknuepfung-auf-eine-Menge-

        
Bezug
Verknüpfung auf eine Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 06:49 Fr 16.12.2011
Autor: angela.h.b.


> Gibt es eine Verknüpfung ⋅ auf M:={1,2,3,4} derart, dass
> (M,⋅) eine Gruppe ist und die folgenden Gleichungen
> gelten:
> 1⋅1=2,2⋅2=1⋅3,3⋅3=1⋅4?
>  ICh brauche ansätze, weil ich hier überhaupt nicht
> weiterkomme..
>  vielen dank :)

Hallo,

[willkommenmr].

Du hast hier [mm] 1^1=1, 1^2=2, 1^3=3, 1^5=4. [/mm]

Was ist nun [mm] 1^4? [/mm] Man kann nur 1,2,3,4 bekommen.

Wenn [mm] 1=1^4, [/mm] dann ist [mm] 4=1^5=1*1^4=1*1=2. [/mm]
Wenn [mm] 1=1^2, [/mm] dann ...
[mm] \vdots [/mm]

Gruß v. Angela




Bezug
        
Bezug
Verknüpfung auf eine Menge: Voraussetzung
Status: (Antwort) fertig Status 
Datum: 07:51 Fr 16.12.2011
Autor: Al-Chwarizmi


> Gibt es eine Verknüpfung ⋅ auf M:={1,2,3,4} derart, dass
> (M,⋅) eine Gruppe ist und die folgenden Gleichungen
> gelten:
> 1⋅1=2,2⋅2=1⋅3,3⋅3=1⋅4?


Es ist klar, dass man sich unter den Elementen der Menge
hier nicht die gewöhnlichen Zahlen 1,2,3,4 aus [mm] \IN [/mm]
vorstellen darf.
So gesehen fehlt aber eine wichtige Voraussetzung für
die Aufgabe, nämlich die, dass es sich bei den Elementen
von M um 4 paarweise voneinander verschiedene Elemente
handeln soll.
Andernfalls dürfte man z.B. annehmen, dass 1=2=3=4
und 1*1=1 . Die entstehende Gruppe wäre dann die
triviale Gruppe.

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]