matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisVerknüpfung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Analysis" - Verknüpfung
Verknüpfung < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfung: Idee
Status: (Frage) beantwortet Status 
Datum: 16:07 Di 06.12.2011
Autor: ella87

Aufgabe
Es seien die Funktionen [mm]f: \IR \to \IR [/mm] mit [mm]f(x)=x^2[/mm] und [mm]g: \IR \to \IR [/mm] mit [mm]g(x)=(x-\bruch{1}{2})^2[/mm] gegeben.
X sein binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm].

Bestimmen Sie die Verteilungen
(a)[mm]f \circ X [/mm]
(b)[mm]g \circ X [/mm]

X binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm] bedeutet:

[mm]P(X=x) = {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x}[/mm]

wobei für x doch gilt [mm] x \in \{0,1,2,...\}[/mm] oder?

dann hab ich bei (a):

[mm]f \circ X [/mm] = [mm] f (X(x ))[/mm] = [mm]\left( {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm] = [mm]\left( \bruch{1!}{x!(1-x)!}\bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]

aber jetzt ist [mm] \bruch{1!}{x!(1-x)!}[/mm] nur defniert für [mm]x \in \{0,1\}[/mm], weil ich für negative Zahlen doch keine Fakultäten berechnen kann, oder?
Muss ich dann nur die beiden Werte ausrechnen oder ist das alles falsch?

        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Di 06.12.2011
Autor: kamaleonti

Hallo ella87,

> Es seien die Funktionen [mm]f: \IR \to \IR[/mm] mit [mm]f(x)=x^2[/mm] und [mm]g: \IR \to \IR[/mm]
> mit [mm]g(x)=(x-\bruch{1}{2})^2[/mm] gegeben.
>  X sein binomialverteilte Zufallsvariable mit Parametern [mm]1[/mm]
> und [mm]\bruch{1}{3}[/mm].
>  
> Bestimmen Sie die Verteilungen
>  (a)[mm]f \circ X[/mm]
>  (b)[mm]g \circ X[/mm]
>  X binomialverteilte
> Zufallsvariable mit Parametern [mm]1[/mm] und [mm]\bruch{1}{3}[/mm]
> bedeutet:
>  
> [mm]P(X=x) = {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x}[/mm]
>
> wobei für x doch gilt [mm]x \in \{0,1,2,...\}[/mm] oder?

Sinnvollerweise betrachtet man hier nur [mm] \{0,1\} [/mm] als Wertebereich der Zufallsvariable X.

Für Zahlen [mm] z\in\IZ\backslash\{0,1\} [/mm] gibt es keine Möglichkeit, z Elemente aus einer einelementigen Menge auszuwählen. Man kann für solche z daher definieren

      [mm] \binom{1}{z}:=0. [/mm]

>  
> dann hab ich bei (a):
>  
> [mm]f \circ X[/mm] = [mm]f (X(x ))[/mm] = [mm]\left( {1 \choose x} \bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]
> = [mm]\left( \bruch{1!}{x!(1-x)!}\bruch{1}{3}^x \bruch{2}{3}^{1-x} \right)^2[/mm]

Warum setzt Du für X(x) eine Wahrscheinlichkeit ein? X nimmt doch nur die Werte 0 und 1 an (das sagt zum Beispiel aus, ob ein Münzwurf erfolgreich war, oder nicht).

Bei a) ist [mm] f(0)=0^2=0 [/mm] und [mm] f(1)=1^2=1. [/mm] Die Funktion [mm] $f\circ [/mm] X$ hat also die Werte 0 und 1. Nun ist nach der Verteilung von [mm] $f\circ [/mm] X$ gefragt.

Zu berechnen ist also [mm] $P(f\circ [/mm] X=0)$ und [mm] $P(f\circ [/mm] X=1)$.

LG

Bezug
                
Bezug
Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 06.12.2011
Autor: ella87

danke, den ersten Teil habe ich glaub ich verstanden.

> Bei a) ist [mm]f(0)=0^2=0[/mm] und [mm]f(1)=1^2=1.[/mm] Die Funktion [mm]f\circ X[/mm]
> hat also die Werte 0 und 1. Nun ist nach der Verteilung von
> [mm]f\circ X[/mm] gefragt.
>  
> Zu berechnen ist also [mm]P(f\circ X=0)[/mm] und [mm]P(f\circ X=1)[/mm].

Hierzu ist mir nicht ganz klar, wie ich das berechne, bzw. wie ich den Zusammenhang zur Binomialverteilung herstelle.
oder ist [mm]P(f\circ X=0)[/mm] das selbe wie [mm]P(X=0)[/mm]?


Bezug
                        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 06.12.2011
Autor: kamaleonti


> danke, den ersten Teil habe ich glaub ich verstanden.
>  
> > Bei a) ist [mm]f(0)=0^2=0[/mm] und [mm]f(1)=1^2=1.[/mm] Die Funktion [mm]f\circ X[/mm]
> > hat also die Werte 0 und 1. Nun ist nach der Verteilung von
> > [mm]f\circ X[/mm] gefragt.
>  >  
> > Zu berechnen ist also [mm]P(f\circ X=0)[/mm] und [mm]P(f\circ X=1)[/mm].
>  
> Hierzu ist mir nicht ganz klar, wie ich das berechne, bzw.
> wie ich den Zusammenhang zur Binomialverteilung herstelle.
>  oder ist [mm]P(f\circ X=0)[/mm] das selbe wie [mm]P(X=0)[/mm]?

Ja, hier ist das so, denn [mm] $f\circ [/mm] X$ ist genau dann Null, wenn auch $X$ Null ist.

>  

LG


Bezug
                                
Bezug
Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Di 06.12.2011
Autor: ella87

dann bekomme ich aber bei der (b) ein Problem...

da hab ich ja dann
[mm]g(0)= \bruch{1}{4}[/mm] und auch [mm]g(1)= \bruch{1}{4}[/mm]

logisch wäre dann ja nur (zumindest nach meiner Logik...):

[mm]P(g \circ X =\bruch{1}{4} ) =1 [/mm]

Bezug
                                        
Bezug
Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Di 06.12.2011
Autor: kamaleonti


> dann bekomme ich aber bei der (b) ein Problem...
>  
> da hab ich ja dann
>  [mm]g(0)= \bruch{1}{4}[/mm] und auch [mm]g(1)= \bruch{1}{4}[/mm]
>  
> logisch wäre dann ja nur (zumindest nach meiner
> Logik...):
>  
> [mm]P(g \circ X =\bruch{1}{4} ) =1[/mm]

So ist es [daumenhoch]!

LG


Bezug
                                                
Bezug
Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 06.12.2011
Autor: ella87

danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]