matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenVerknüpfte Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Trigonometrische Funktionen" - Verknüpfte Funktionen
Verknüpfte Funktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfte Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 04.07.2009
Autor: Julia2009

Hallo!

kann mir jemand sagen aus welchen Funktionen f(x)= 1/ cos (x) verknüpft ist?
ist das überhaupt eine verknüpfte funktion?

Haben zu verschiedenen funktionen verschiedene funktionstherme, die wir zuordnen sollen. die zuordung habe ich mit einem funktionsplotter gemacht.

Mir fehlt nun nur die brgeündung warum der Therm von f(x) auch zu f(X) gehört.

ich hoffe ihr versteht was ich meine:-)

liebe grüße!
Julia2009

        
Bezug
Verknüpfte Funktionen: Hinweis
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 04.07.2009
Autor: Loddar

Hallo Julia!


So ganz klar ist mir Deine Frage nicht.

Aber Deine Funktion $f(x) \ = \ [mm] \bruch{1}{\cos(x)}$ [/mm] ist eine Verknüpfung aus $g(x) \ = \ [mm] \bruch{1}{x}$ [/mm] und $h(x) \ = \ [mm] \cos(x)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Verknüpfte Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Sa 04.07.2009
Autor: Julia2009

Danke, so ist mir schon geholfen:-)

und warum ist das so?
wie kannman darauf kommen?

Bezug
                        
Bezug
Verknüpfte Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 04.07.2009
Autor: fencheltee


> Danke, so ist mir schon geholfen:-)
>  
> und warum ist das so?
>  wie kannman darauf kommen?  

naja, du musst schauen, in welcher reihenfolge du rechnen musst.
bei deinem beispiel musst du ja erst den cosinus von x berechnen (g(x)=cos(x)) und dann davon den Kehrwert bilden [mm] (h(x)=\frac{1}{x}) [/mm]
daher gilt: f(x)=h [mm] \circ [/mm] g(x) = h(g(x)) = h(cos(x)) = [mm] \frac{1}{cos(x)} [/mm]

ein weiteres beispiel wäre [mm] f(x)=\frac{1}{x^2+1} [/mm]
als erstes wird quadriert [mm] (g(x)=x^2), [/mm] dann 1 addiert (h(x)=x+1) und schließlich der kehrwert gebildet [mm] (i(x)=\frac{1}{x}) [/mm]

Bezug
                                
Bezug
Verknüpfte Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:27 Sa 04.07.2009
Autor: Julia2009

ich verstehs nicht:-(

ich glaube mir fehlen i-welche rechengesetze dazu...
kannst du mir das nochmal anders erklären?
oder detailierter?

vielen dank im voraus für dein verständnis....

liebe grüße!

Bezug
                                        
Bezug
Verknüpfte Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Sa 04.07.2009
Autor: M.Rex

Hallo

Nehmen wir mal das (zugegeben verrückte) Beispiel.

[mm] f(x)=\wurzel{\bruch{1}{x^{2}-4}-2} [/mm]


Zuerst wird x quadriert, mit [mm] y:=i(x)=x^{2}, [/mm] danach wird vom Wert vom Wert für y 4 subtrahiert, also $ z:=h(y)=y-4 $
Jetzt wird der Kehrwert von z bestimmt, also
[mm] w:=g(z)=\bruch{1}{z} [/mm]

Und vom Wert für w wird jetzt 2 subtrahiert, also u:=k(w)=w-2

Danach wird von u die Wurzel gezogen, also [mm] v:=l(u)=\wurzel{u} [/mm]

Insgesamt also

[mm] f(x)=\wurzel{u}=\wurzel{w-2}=\wurzel{\bruch{1}{z}-2}=\wurzel{\bruch{1}{y-4}-2}=\wurzel{\bruch{1}{x^{2}-4}-2} [/mm]

oder als Funktion: $ f(x)=l(k(g(h(i(x))))) $

Jetzt klarer?

Marius

Bezug
                                                
Bezug
Verknüpfte Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:09 So 05.07.2009
Autor: Julia2009

Ja, vielen Dank!

Liebe Grüße!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]