matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVerkettungen u. Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Verkettungen u. Gleichungen
Verkettungen u. Gleichungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettungen u. Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 19.05.2010
Autor: karlhungus

Aufgabe
f,g: [mm] \IR \to \IR [/mm] seien 2x stetig diff'bar und F(x,y):=f(x+g(y)) für alle (x,y) [mm] \in \IR² [/mm]

a) Man zeige : [mm] F_x F_{xy} [/mm] = [mm] F_y F_{xx} [/mm]

b) Man bestimme alle f [mm] \in C^2(\IR) [/mm] mit f(x+f(y)) = f(x) + f(y)

Hallo,

mit a) hatte ich soweit eigentlich keine probleme, ich hab sie nur gepostet, weil die teilaufgaben bei uns oft verknüpft sind.

für b) fehlt mir nun einfach die kreativität für einen ansatz. sicherlich erfüllt die identität das geforderte :-), aber für einen tipp zum systematischen vorgehen wäre ich sehr dankbar.

gruß,
karl

        
Bezug
Verkettungen u. Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mi 19.05.2010
Autor: fred97


> f,g: [mm]\IR \to \IR[/mm] seien 2x stetig diff'bar und
> F(x,y):=f(x+g(y)) für alle (x,y) [mm]\in \IR²[/mm]
>  
> a) Man zeige : [mm]F_x F_{xy}[/mm] = [mm]F_y F_{xx}[/mm]
>  
> b) Man bestimme alle f [mm]\in C^2(\IR)[/mm] mit f(x+f(y)) = f(x) +
> f(y)
>  Hallo,
>  
> mit a) hatte ich soweit eigentlich keine probleme, ich hab
> sie nur gepostet, weil die teilaufgaben bei uns oft
> verknüpft sind.
>  
> für b) fehlt mir nun einfach die kreativität für einen
> ansatz. sicherlich erfüllt die identität das geforderte
> :-), aber für einen tipp zum systematischen vorgehen wäre
> ich sehr dankbar.

Nehmen wir an für f $ [mm] \in C^2(\IR) [/mm] $ gilt

                f(x+f(y)) = f(x) + f(y)

Die folgenden Gleichungen gelten für alle x,y [mm] \in \IR. [/mm]

Differenziert man das nach x, so erhält man:

       (1)   f'(x+f(y)) = f'(x)

Differentiation nach y liefert:

       (2)  f'(x+f(y))f'(y) = f'(y)

Mit (1) folgt:

       (3)   f'(x)f'(y) = f'(y)

Differenziert man (3) nach x, so ergibt sich:

       (4)  f''(x)f'(y) = 0

Differenziert man (3) nach y, so ergibt sich:

        (5)  f'(x)f''(y)=f''(y)

Vertauscht man in (5) die Rollen von x und y , so hat man:

         (6)  f'(y)f''(x)=f''(x)

Zusammen mit (4) ergibt das

                f''(x) =0

Somit gibt es c, d [mm] \in \IR [/mm] mit:

               f(x) =cx+d.

Nun überzeuge Dich davon, dass für die gesuchte Funktion f nur in Frage kommt:

               f(x) = 0 für x [mm] \in \IR [/mm]

oder  

                f(x) =x für  x [mm] \in \IR [/mm]

FRED


>  
> gruß,
>  karl


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]