matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenVerkettung von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Verkettung von Funktionen
Verkettung von Funktionen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung von Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:59 Mo 18.04.2011
Autor: low_head

Aufgabe
Gegeben sei die Funktion h durch einen Funktionsterm t(x). Schreiben Sie h als nicht-triviale Verkettung zweier Funktionen k und l.

t(x) = x

Ich wollte nun die Verkettung von k o l(x) = t(x) machen
aber egal wie ich es angehe die Verkettung ist trivial.

Wer kann mir eine Idee geben?

        
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Mo 18.04.2011
Autor: gfm


> Gegeben sei die Funktion h durch einen Funktionsterm t(x).
> Schreiben Sie h als nicht-triviale Verkettung zweier
> Funktionen k und l.
>  
> t(x) = x
>  Ich wollte nun die Verkettung von k o l(x) = t(x) machen
>  aber egal wie ich es angehe die Verkettung ist trivial.
>  
> Wer kann mir eine Idee geben?

Was heißt denn "trivial"?

LG

gfm

Bezug
                
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Mo 18.04.2011
Autor: low_head

ich weiß es nicht genau, aber ich denke, dass es einen Unterschied machen muss ob ich nun k o l(x) oder l o k(x) verkette

Bezug
                        
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Di 19.04.2011
Autor: barsch

Hey,

echt knifflig die Aufgabe. Wenn du irgendwann mal an die Lösung kommst - poste sie doch bitte mal. Würde mich schon sehr interessieren, ob es zwei nicht-triviale Funktionen [mm]k(x)[/mm] und [mm]l(x)[/mm], sodass [mm]k(l(x))=x[/mm].

Gruß
barsch


Bezug
                                
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:28 Mi 20.04.2011
Autor: Marcel

Hallo,

> Hey,
>  
> echt knifflig die Aufgabe. Wenn du irgendwann mal an die
> Lösung kommst - poste sie doch bitte mal. Würde mich
> schon sehr interessieren, ob es zwei nicht-triviale
> Funktionen [mm]k(x)[/mm] und [mm]l(x)[/mm], sodass [mm]k(l(x))=x[/mm].

ich finde die Aufgabenstellung schlecht, ansonsten findet man leicht Beispiele, wenn etwa das Bild von [mm] $l\,$ [/mm] eine echte Teilmenge des Definitionsbereichs von [mm] $k\,$ [/mm] ist.

(Nebenbei: [mm] $l\,$ [/mm] muss notwendigerweise injektiv sein, denn aus [mm] $l(a)=l(b)\,$ [/mm] folgt [mm] $a=k(l(a))=k(l(b))=b\,.$ [/mm] Die Injektivität von [mm] $k\,$ [/mm] braucht man nicht, siehe auch das unten aufgeführte Beispiel.)

Beispiel:
Betrachte [mm] $l:\{1,2,3,4\} \to \{1,4,9,16\}$ [/mm] mit [mm] $l(x)=x^2\,.$ [/mm] Setze $k: M [mm] \to [0,\infty)$ [/mm] fest durch [mm] $k(y)=\sqrt{y}\,,$ [/mm] wobei $M [mm] \subseteq \IR$ [/mm] irgendeine Teilmenge derart sei, dass [mm] $\{1,4,9,16\} \subseteq [/mm] M [mm] \subseteq [0,\infty)\,.$ [/mm]

Ähnliche Beispiele kann man sehr schnell kontruieren, sogar auf noch viel komplexere Arten und Weisen. (Je nach [mm] $M\,$ [/mm] macht $l [mm] \circ [/mm] k$ keinen Sinn!)

Und ein anderes Beispiel, wo man $l [mm] \circ [/mm] k [mm] \not= [/mm] k [mm] \circ [/mm]  l$ hat:
Betrachte $k: [mm] \IR \to [0,\infty)$ [/mm] mit [mm] $k(x)=x^2$ [/mm] und $l: [mm] [0,\infty) \to \IR$ [/mm] mit [mm] $l(y)=\sqrt{y}\,.$ [/mm]

Hier ist [mm] $l(k(x))=\sqrt{x^2}=|x|\,,$ [/mm] also [mm] $\not=x$ [/mm] für alle $x < 0$ (betrachte etwa [mm] $x=-1\,$), [/mm] aber
[mm] $$k(l(y))=\sqrt{y}^2=y$$ [/mm]
für alle $y [mm] \ge 0\,.$ [/mm]

Gruß,
Marcel

Bezug
                                        
Bezug
Verkettung von Funktionen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Mi 20.04.2011
Autor: barsch

Hallo Marcel,

[lichtaufgegangen]. Vielen Dank.  Da habe ich doch etwas zu einseitig überlegt.

Gruß
barsch


Bezug
                        
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Di 19.04.2011
Autor: gfm


> ich weiß es nicht genau, aber ich denke, dass es einen
> Unterschied machen muss ob ich nun k o l(x) oder l o k(x)
> verkette

[mm] (\tan\circ\arctan)(x)=x [/mm]

[mm] (\arctan\circ\tan)(x+k\pi)=x [/mm]

LG

gfm

Bezug
                        
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Di 19.04.2011
Autor: leduart

Hallo
es ist immer noch nicht klar was "trivial" ist
für mich wäre trivial k(x)=x und l(x)=x
Gruss leduart


Bezug
                                
Bezug
Verkettung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:52 Di 19.04.2011
Autor: barsch

Hi,

ich bin jetzt von low_heads Angabe ausgegangen, also, dass "nicht-trivial" bedeutet [mm]k(l(x))\neq{l(k(x))}[/mm]. Für [mm]k(l(x))={l(k(x))}[/mm] fallen einem ja unendlich viele Möglichkeiten ein.

Gruß
barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]