matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVerkettung u. Integralrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Verkettung u. Integralrechnung
Verkettung u. Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung u. Integralrechnung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:56 So 20.12.2009
Autor: expositiv

Aufgabe
Die Funktionen g und h seien durch g(x)= 4x - 3 und h(x) = [mm] \bruch{1}{x^2} [/mm] definiert.

a) Bilden Sie die Verkettung f(x) = h(g(x)) sowie ihre Ableitung und eine Stammfunktion

b) Sei jetzt [mm] g_{c}(x)= [/mm] cx-3 und [mm] f_{c}(x) [/mm] = [mm] h(g_{c}(x)). [/mm] Berechnen Sie das Integral [mm] \integral_{0}^{\bruch{2}{c}}{f_{c}(x) dx} [/mm] und stellen Sie fest, für welches c es den Wert 10 hat.

Guten Abend,

Ist meine Lösung für:

a)
f(x) = [mm] \bruch{1}{(4*x-3)^2} [/mm]
f'(x) = - [mm] \bruch{16*x^2 - 24}{(4*x-3)^2} [/mm]
F(x)= - [mm] \bruch{1}{4} [/mm] * [mm] (4x-3)^{-1} [/mm]
= - [mm] \bruch{1}{16*x+12} [/mm]

und

b)

10= [- [mm] \bruch{1}{c^2 * x - 3*c} [/mm] ]     Integral von 0 bis [mm] \bruch{2}{c} [/mm]
c = - [mm] \bruch{1}{20} [/mm]

richtig?

Mit freundlichen Grüßen
expositiv

        
Bezug
Verkettung u. Integralrechnung: zu Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 22:00 So 20.12.2009
Autor: Loddar

Hallo expositiv!


> f(x) = [mm]\bruch{1}{(4*x-3)^2}[/mm]

[ok]


> f'(x) = - [mm]\bruch{16*x^(2)-24}{(4*x-3)^2}[/mm]

[notok] Da hast Du wohl die MBQuotientenregel falsch angewandt.
Etwas leichter wird die Ableitung, wenn man zunächst umformt zu:
$$f(x) \ = \ [mm] \bruch{(4x-3)^2} [/mm] \ = \ [mm] (4x-3)^{-2}$$ [/mm]

> F(x)= - [mm]\bruch{1}{4}[/mm] * (4x-3)^-1

[ok]

> = - [mm]\bruch{1}{16*x+12}[/mm]

[notok] Hier stimmt das hintere Vorzeichen im Nenner nicht.


Gruß
Loddar


Bezug
                
Bezug
Verkettung u. Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 20.12.2009
Autor: expositiv

Ich habe bei der Ableitung in Aufgabe a) die Reziprokenregel angewandt.

f(x) = [mm] \bruch{1}{v(x)} [/mm]
f'(x) = - [mm] \bruch{v'(x)}{v^2(x)} [/mm]


also wäre es bei der Funktion:

f(x) = [mm] \bruch{1}{(4x-3)^2} [/mm]     (damit mir die Ableitung leicht fällt multiplizier ich aus)
f'(x) [mm] \bruch{32*x-24}{(4*x - 3)^4} [/mm]

Bezug
                        
Bezug
Verkettung u. Integralrechnung: Korrektur
Status: (Antwort) fertig Status 
Datum: 22:14 So 20.12.2009
Autor: Loddar

Hallo expositiv!


> Ich habe bei der Ableitung in Aufgabe a) die
> Reziprokenregel angewandt.

[ok]

  

> f(x) = [mm]\bruch{1}{v(x)}[/mm]
> f'(x) = - [mm]\bruch{v'(x)}{v^2(x)}[/mm]

[ok]

  

> also wäre es bei der Funktion:
>  
> f(x) = [mm]\bruch{1}{(4x-3)^2}[/mm]     (damit mir die Ableitung
> leicht fällt multiplizier ich aus)
> f'(x) [mm]\bruch{32*x-24}{(4*x - 3)^4}[/mm]  

[ok] Aber hier kann man noch durch $(4x-3)_$ kürzen! Klammere im Zähler zunächst $8_$ aus.


Gruß
Loddar


Bezug
                                
Bezug
Verkettung u. Integralrechnung: Moment mal...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 So 20.12.2009
Autor: reverend

Hallo expositiv,

erst schreibst Du richtig:

> > f(x) = [mm]\bruch{1}{v(x)}[/mm]
>  > f'(x) = [mm] \blue{-}[/mm]  [mm]\bruch{v'(x)}{v^2(x)}[/mm]

>  
> [ok]
>
> > also wäre es bei der Funktion:
>  >  
> > f(x) = [mm]\bruch{1}{(4x-3)^2}[/mm]     (damit mir die Ableitung
> > leicht fällt multiplizier ich aus)
>  > f'(x) [mm]\bruch{32*x-24}{(4*x - 3)^4}[/mm]  

...und dann fehlt das "Minus", das ich oben blau markiert hatte.
Übrigens fällt die Ableitung durch das Ausmultiplizieren nicht leichter, sondern schwerer. Das ist bei der Quotientenregel fast immer so, weil man übersieht, was noch zu kürzen wäre, bevor man zusammenfasst.

Faustregel: steht im Nenner ein Polynom, so wird es (ganz!) in der Ableitung quadriert im Nenner stehen, und in jeder weiteren (trotz der Quadratregel oben) nur im Exponenten um eins erhöht. Die 22. Ableitung Deiner Funktion wird also den Nenner [mm] (4x-3)^{23} [/mm] haben. Alle anderen Zufügungen des Faktors sind dann zwischendurch gekürzt worden.
Wie bei allen Faustregeln ist auch hier etwas Vorsicht geboten, aber mit der Zeit bekommst Du sicher ein Gefühl dafür.

> [ok] Aber hier kann man noch durch [mm](4x-3)_[/mm] kürzen!
> Klammere im Zähler zunächst [mm]8_[/mm] aus.

Eben. Das könntest Du Dir sparen, wenn Du nicht ausgerechnet hättest.
Aber vor allem: da gehört noch ein Minus vor die ganze Chose!

lg
reverend


Bezug
                                        
Bezug
Verkettung u. Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 So 20.12.2009
Autor: expositiv

ja ich habe da ebenfalls das "=" Zeichen vergessen ... war nur ein Tippfehler.

Habe jetzt gekürzt und bekam f'(x) = - [mm] \bruch{8}{(4x-3)^3} [/mm] ... ich hatte im momentan keine Lust noch zusätzlich die Kettenregel anzuwenden und habe IN DEM FALL "einfach" ausmultipliziert :-)

Bezug
                                                
Bezug
Verkettung u. Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 So 20.12.2009
Autor: reverend

Hallo expositiv,

so siehts jetzt auch gut aus.

lg
rev

Bezug
        
Bezug
Verkettung u. Integralrechnung: zu Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 22:23 So 20.12.2009
Autor: Loddar

Hallo expositiv!


> 10= [- [mm]\bruch{1}{c^2 * x - 3*c}[/mm] ]     Integral von 0 bis [mm]\bruch{2}{c}[/mm]

Die Stammfunktion stimmt. Aber Du hast hier wahrscheinlich die Grenze [mm] $x_1 [/mm] \ = \ 0$ vergessen einzusetzen.

Denn hier gilt $F(0) \ [mm] \not= [/mm] \ 0$ !


> c = - [mm]\bruch{1}{20}[/mm]

[notok] Folgefehler!
Ich habe erhalten: $c \ = \ [mm] \bruch{1}{15}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Verkettung u. Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 20.12.2009
Autor: Tyskie84

Hallo Loddar,


>  Ich habe erhalten: [mm]c \ = \ \bruch{1}{15}[/mm] .
>  

Ich auch :-) . Warst schneller mit dem Klicken....da war ich noch am rechnen :-)


>
> Gruß
>  Loddar
>  

[hut] Gruß


Bezug
                        
Bezug
Verkettung u. Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 So 20.12.2009
Autor: reverend

Hallo Tyskie, hallo Loddar,

> Ich auch :-) . Warst schneller mit dem Klicken....da war
> ich noch am rechnen :-)

Ging mir auch so, nicht zum ersten Mal heute...
Ich glaube, Loddar rechnet einfach schneller. :-)

Grüße und natürlich auch den [hut]
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]