matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperVerifikation Ring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Verifikation Ring
Verifikation Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verifikation Ring: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:32 Di 04.11.2014
Autor: mathenull00

Aufgabe
Seien [mm] R_1, R_2 [/mm] zwei Ringe. Wir definieren auf der Produktmenge R = [mm] R_1 \times R_2 [/mm] zwei Verknüpfungen durch

(a,b)+(a',b') = (a+a',b+b') und (a,b) *  (a',b') = (aa',bb')

Verifizieren Sie, dass R dadurch zu einem Ring wird. Handelt es sich dabei um einen Körper, falls [mm] R_1, R_2 [/mm] Körper sind?

War in der Vorlesung dazu leider krank, habe versucht mich mithilfe von Youtube Videos schlau zu machen, verstehe aber leider nur Bahnhof.

Ich bin mittlerweile soweit gekommen, dass ich weiß, wie es theoretisch verifiziert werden kann (Überprüfen der Eigenschaften abelsche Gruppe bei [mm] (R_1, R_2, [/mm] + ), Halbgruppe bei [mm] (R_1 [/mm] , [mm] R_2 [/mm] , [mm] \times [/mm] ) , Distributivgesetze).

Bin mir leider unsicher, wie ich diese Eigenschaften für die Aufgabe überprüfe.

Danke sehr im Vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verifikation Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Di 04.11.2014
Autor: Marcel

Hallo,

> Seien [mm]R_1, R_2[/mm] zwei Ringe. Wir definieren auf der
> Produktmenge R = [mm]R_1 \times R_2[/mm] zwei Verknüpfungen durch
>  
> (a,b)+(a',b') = (a+a',b+b') und (a,b) *  (a',b') =
> (aa',bb')
>  
> Verifizieren Sie, dass R dadurch zu einem Ring wird.
> Handelt es sich dabei um einen Körper, falls [mm]R_1, R_2[/mm]
> Körper sind?
>  War in der Vorlesung dazu leider krank, habe versucht mich
> mithilfe von Youtube Videos schlau zu machen, verstehe aber
> leider nur Bahnhof.
>
> Ich bin mittlerweile soweit gekommen, dass ich weiß, wie
> es theoretisch verifiziert werden kann (Überprüfen der
> Eigenschaften abelsche Gruppe bei [mm](R_1, R_2,[/mm] + ),
> Halbgruppe bei [mm](R_1[/mm] , [mm]R_2[/mm] , [mm]\times[/mm] ) ,
> Distributivgesetze).

was ist denn bei Dir [mm] $R_1,R_2$? [/mm] Das Ding oben heißt

   [mm] $R=R_1 \times R_2\,,$ [/mm]

es ist

    [mm] $R_1 \times R_2=\{(a,b) \mid a \in R_1 \wedge b \in R_2\}\,.$ [/mm]

> Bin mir leider unsicher, wie ich diese Eigenschaften für
> die Aufgabe überprüfe.

Ich schreibe mal aus didaktischen Gründen zunächst lieber

    [mm] $\oplus$ [/mm]

für die Addition auf [mm] $R\,,$ [/mm] also

    $(a,b) [mm] \oplus [/mm] (a',b'):=(a+a', [mm] b+b')\,.$ [/mm]

Ist Dir übrigens klar, dass rechterhand zwei verschiedene Additionen stehen,
die auch schon das selbe Symbol (+) benutzen? In der ersten Komponente
ist die Addition "auf [mm] $R_1$", [/mm] in der zweiten die "auf [mm] $R_2$" [/mm] gemeint.

Wie prüft man nun etwa, ob [mm] $\oplus$ [/mm] auch assoziativ ist?

Zu zeigen: Für (alle) $(a,b),(a',b'),(a'',b'') [mm] \in [/mm] R$ gilt

    $(a,b) [mm] \oplus \red{\,(\,}(a',b') \oplus (a'',b'')\red{\,)\,}=\red{\,(\,}(a,b) \oplus (a',b')\red{\,)\,} \oplus [/mm] (a'',b'')$

Jetzt zum Beweis: Um die Bedeutung von *Klammern* hier deutlicher zu machen,
schreibe ich mal (in ungewöhnlicher Weise) [mm] $\vektor{a\\b}^T=(a,b)\,.$ [/mm] Wir haben dann

    [mm] $\vektor{a\\b}^T \oplus \red{\,(\,}\vektor{a'\\b'}^T \oplus \vektor{a''\\b''}^T\red{\,)\,}=\vektor{a\\b}^T \oplus \vektor{\blue{\overbrace{a'+a''}^{\in R_1}}\\\underbrace{b'+b''}_{\in R_2}}^T=\vektor{\blue{\overbrace{a+(a'+a'')}^{\in R_1}}\\\underbrace{b+(b'+b'')}_{\in R_^2}}^T$ [/mm]

    [mm] $=\vektor{\blue{\overbrace{(a+a')+a''}^{\in R_1}}\\\underbrace{(b+b')+b''}_{\in R_^2}}^T=...$ [/mm]

Frage an Dich: Hast Du eine Idee, wie man die letzte Gleichheit begründet?
(Was mach' ich da *komponentenweise*? Und warum darf ich das?)

Wie geht's weiter?

Und bei den restlichen nachzuprüfenden Axiomen ist die Vorgehensweise
analog bzw. ähnlich!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]