matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesVerhältnis Kreisfläche/Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis-Sonstiges" - Verhältnis Kreisfläche/Gerade
Verhältnis Kreisfläche/Gerade < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhältnis Kreisfläche/Gerade: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 08:49 So 21.06.2009
Autor: Tshakira

Aufgabe
Verhältnis Kreisfläche/Gerade

Ein Kreis mit Radius "r" soll durch einen Kreisbogen mit Radius (R) in exakt zwei gleiche geteilt werden, wobei sich der Mittelpunkt des Kreisbogens auf dem Umfang des Kreises befindet. Ich versuche nun verzweifelt nach einem Verhältnis r/R.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verhältnis Kreisfläche/Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 So 21.06.2009
Autor: abakus


> Verhältnis Kreisfläche/Gerade
>  Ein Kreis mit Radius "r" soll durch einen Kreisbogen mit
> Radius (R) in exakt zwei gleiche geteilt werden, wobei sich
> der Mittelpunkt des Kreisbogens auf dem Umfang des Kreises
> befindet. Ich versuche nun verzweifelt nach einem
> Verhältnis r/R.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

[Dateianhang nicht öffentlich]
Hallo,
ich würde der Einfachheit halber r=1 setzen.
Dann gilt für den Kreis [mm] x^2+y^2=1 [/mm] (und für seine untere Hälfte [mm] y=\wurzel{1-x^2}). [/mm]
Der Kreisbogen habe seinen Mittelpunkt in (0|-1), für ihn gilt [mm] x^2+(y+1)^2=R^2 [/mm] und damit [mm] y=\wurzel{R^2-x^2}-1 [/mm]
Berechne die x-Koordinaten [mm] x_1 [/mm] und [mm] x_2=-x_1 [/mm] der beiden Schnittpunkte in Abh. von R.
Der Flächeninhalt der unteren Teilfäche ist dann [mm] \integral_{x_1}^{x_2}{(\wurzel{R^2-x^2}-1-(-\wurzel{1-x^2}))dx} [/mm] und muss [mm] 0,5*\pi *1^2 [/mm] ergeben.
Gruß Abakus


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Verhältnis Kreisfläche/Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Mo 22.06.2009
Autor: Tshakira

Vorerst herzlichen Dank für die rasche Antwort.
Nur: Ich fragte nach dem Verhältnis r/R.
Ich möchte nicht die Flächenberechnung der unteren Hälfte, da sie ja - wie angegeben - genau gleich ist der oberen.
Da bin ich schon eher der Meinung des Mitglieds Al-Chwaizmi.
Trotzdem nochmals vielen Dank - Tshakira

Bezug
                        
Bezug
Verhältnis Kreisfläche/Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Mo 22.06.2009
Autor: abakus


> Vorerst herzlichen Dank für die rasche Antwort.
>  Nur: Ich fragte nach dem Verhältnis r/R.

Na eben. Wenn wir r=1 ansetzen und du wie beschrieben R berechnest, dann hast du das Verhältnis r/R=1/R.
Gruß Abakus

> Ich möchte nicht die Flächenberechnung der unteren Hälfte,
> da sie ja - wie angegeben - genau gleich ist der oberen.
>  Da bin ich schon eher der Meinung des Mitglieds
> Al-Chwaizmi.
>  Trotzdem nochmals vielen Dank - Tshakira


Bezug
        
Bezug
Verhältnis Kreisfläche/Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 10:15 So 21.06.2009
Autor: Al-Chwarizmi


> Ein Kreis mit Radius r soll durch einen Kreisbogen mit
> Radius R in zwei exakt gleiche Teilflächen geteilt werden,
> wobei sich der Mittelpunkt des Kreisbogens auf dem
> Umfang des Kreises befindet.

Hallo ,

den geometrischen Teil kann man natürlich auch
ohne Integration mit elementarer Planimetrie
bewältigen, durch Addition und Subtraktion
geeigneter Sektor- und Dreiecksflächen.
Dann kommt man allerdings auf eine Gleichung,
die man eben gerade nicht algebraisch exakt
lösen kann. Man ist auf ein Näherungsverfahren
angewiesen.

Ist nun das Problem bei der Aufstellung einer
Formel für den Flächeninhalt oder bei der Lösung
der Gleichung ?

LG    Al-Chwarizmi


Übrigens:

Als Variable eignet sich zum Beispiel der Zentriwinkel
des Kreisbogens. Die entstehende Gleichung wird
dann, nach Vereinfachung, recht übersichtlich
(aber eben transzendent).

Bezug
                
Bezug
Verhältnis Kreisfläche/Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Mo 22.06.2009
Autor: Tshakira

Herzlichen Dank für die rasche Antwort. Diese bestätigt mir die Antwort meines HTL-Professors, dass es hier nor einen Näherungswert geben kann.
Liebe Grüße - Tshakira

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]