matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenVergessenskurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Vergessenskurve
Vergessenskurve < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vergessenskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 17.12.2012
Autor: Apfelchips

Aufgabe
[Auf die wichtigsten Infos reduziert]

[mm]p(t)[/mm] bedeutet den Prozentsatz des Lernstoffes, der nach [mm]t[/mm] Zeiteinheiten noch im Gedächtnis ist. Also ist p(0) = 100

Ein gewisser Prozentsatz [mm]b[/mm] des Stoffes wird nie vergessen. Also ist [mm]0 < b < 100[/mm] .

Zur Zeit [mm]t[/mm] ist die Vergessensrate [mm]p'(t)[/mm] proportional zu dem noch zu vergessenden Stoff, also zu [mm]p(t) - b[/mm]

Formulieren Sie das Problem als Differentialgleichung und lösen Sie diese.






Hallo zusammen,

ich sitze jetzt schon seit einiger Zeit an meiner Lösung zu dieser Aufgabe und würde gern wissen, in wie weit Ihr sie für sinnvoll haltet – und natürlich, was nicht sinnvoll, also falsch ist.

Aus den gegebenen Daten stelle ich zunächst einmal folgende Gleichung auf:

[mm]\frac{\mathrm{d} }{\mathrm{d} t} p(t) = \mu * (p(t)-b)[/mm]

wobei [mm]\mu[/mm] die Wachstumsrate ist.

Jetzt stelle ich die Gleichung nach [mm]\mu[/mm] um (in der Hoffnung, dass sie richtig ist):

[mm]\bruch{p'(t)}{p(t) - b} = \mu[/mm]

Nun geht's an die Integration:

[mm]\integral_{}^{}{\bruch{p'(t)}{p(t)-b} dt} = \integral_{}^{}{\mu dt}[/mm]

Die linke Seite integriere ich (Substitution) und die rechte Seite ignoriere ich erstmal:

[mm]u := p(t) - b[/mm]

[mm]\mathrm{d} t = \frac{\mathrm{d} u}{u'} = \frac{\mathrm{d} u}{p(t)'}[/mm]

[mm]\integral_{}^{}{\bruch{p'(t)}{u} * \bruch{\mathrm{d} u}{p'(t)}}[/mm]

[mm]\integral_{}^{} \bruch{1}{u} * \mathrm{d} u[/mm]

[mm]log(u)[/mm]

Jetzt führe ich die Resubstitution durch und integriere im selben Schritt die rechte Seite der Gleichung, die ich bis eben ignoriert habe:

[mm]log(p(t)-b) = \mu*t[/mm]

[mm]p(t)-b = exp(\mu*t)[/mm]

[mm]p(t) = exp(\mu*t) + b[/mm]

Eine Sache fehlt mir jetzt wohl noch: Die Bedingung, dass [mm]p(0) = 100[/mm]

Wie baue ich das da mit rein? Vielleicht so?

[mm]p(t) = (100-p(t)) exp(\mu*t) + b[/mm]

Ich freue mich auf Eure Anmerkungen.

Viele Grüße
Patrick


        
Bezug
Vergessenskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 17.12.2012
Autor: leduart

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo
du hast beim integrieren die Konstante vergessen, das gibt ein C vor dem e^{\mu*t)
ich würde \mu  gleich negativ schreiben
sonst ist es richtig
Gruss leduart

Bezug
                
Bezug
Vergessenskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Mo 17.12.2012
Autor: Apfelchips

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


Hallo leduart,

danke für deine Antwort.

>  du hast beim integrieren die Konstante vergessen, das gibt
> ein C vor dem e^{\mu*t)

Ich integriere ja beide Seiten der Gleichung, wodurch ja auch zwei Konstanten "entstehen" würden.

Irgendwann hätte ich da also stehen

[mm]log(p(t)-b) + C = \mu * t + C[/mm]

Macht das denn überhaupt Sinn?
Wenn ich jetzt exp(x) anwende, dann wende ich exp(x) ja auch auf die Konstante an. C stünde dann also nicht vor dem [mm]exp(\mu * t)[/mm], sondern "drin".

Hab ich hier einen Denkfehler?

Viele Grüße
Patrick

Bezug
                        
Bezug
Vergessenskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Di 18.12.2012
Autor: fred97

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
>
> Hallo leduart,
>  
> danke für deine Antwort.
>  
> >  du hast beim integrieren die Konstante vergessen, das gibt

> > ein C vor dem e^{\mu*t)
>  
> Ich integriere ja beide Seiten der Gleichung, wodurch ja
> auch zwei Konstanten "entstehen" würden.
>  
> Irgendwann hätte ich da also stehen
>  
> [mm]log(p(t)-b) + C = \mu * t + C[/mm]
>  
> Macht das denn überhaupt Sinn?

So nicht, sondern so:

[mm]log(p(t)-b) = \mu * t + C[/mm]

Mit p(0)=100 ergibt sich:

[mm]log(100-b) = C[/mm]

FRED

>  Wenn ich jetzt exp(x) anwende, dann wende ich exp(x) ja
> auch auf die Konstante an. C stünde dann also nicht vor
> dem [mm]exp(\mu * t)[/mm], sondern "drin".
>  
> Hab ich hier einen Denkfehler?
>  
> Viele Grüße
>  Patrick


Bezug
                                
Bezug
Vergessenskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Di 18.12.2012
Autor: Apfelchips

Aber warum taucht auf der linken Seite keine Konstante auf? Ich integriere doch sowohl links als auch rechts.

Bezug
                                        
Bezug
Vergessenskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Di 18.12.2012
Autor: fred97


> Aber warum taucht auf der linken Seite keine Konstante auf?
> Ich integriere doch sowohl links als auch rechts.  

Dann machen wir das so:


$ log(p(t)-b) + [mm] C_1 [/mm] = [mm] \mu \cdot{} [/mm] t + [mm] C_2 [/mm] $

Setze [mm] C=C_2-C_1 [/mm]

Dann

  $ log(p(t)-b)  = [mm] \mu \cdot{} [/mm] t + C $

FRED


Bezug
                                                
Bezug
Vergessenskurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 Di 18.12.2012
Autor: Apfelchips

Hallo Fred,

> [mm]log(p(t)-b) + C_1 = \mu \cdot{} t + C_2[/mm]
>
> Setze [mm]C=C_2-C_1[/mm]
>  
> Dann
>  
> [mm]log(p(t)-b) = \mu \cdot{} t + C[/mm]

das ist ein toller "Trick" – danke!
Damit konnte ich jetzt p(t) bestimmen.

Bezug
                                                        
Bezug
Vergessenskurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:21 Mi 19.12.2012
Autor: fred97


> Hallo Fred,
>  
> > [mm]log(p(t)-b) + C_1 = \mu \cdot{} t + C_2[/mm]
> >
> > Setze [mm]C=C_2-C_1[/mm]
>  >  
> > Dann
>  >  
> > [mm]log(p(t)-b) = \mu \cdot{} t + C[/mm]
>
> das ist ein toller "Trick"


Das ist kein Trick ! Sondern "Folklore"

FRED

> – danke!
>  Damit konnte ich jetzt p(t) bestimmen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]