matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVereinigung affiner Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Vereinigung affiner Unterräume
Vereinigung affiner Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung affiner Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 05.08.2010
Autor: Lippel

Aufgabe
Es seine $A, A'$ affine Unterräume eines K-Vektorraumes V. Man zeige, $A [mm] \cup [/mm] A'$ ist genau dann ein affiner Unterraum von V, wenn $A [mm] \subset [/mm] A'$ oder $A' [mm] \subset [/mm] A$

Hallo,

ich stehe bei obiger Aufgabe absolut auf dem Schlauch, obwohl sie anschaulich klar ist. Ich kenne die analoge Aussage und auch den Beweis der Aussage für Untervektorräume. Leider kann ich diesen Fall nicht darauf zurück führen. Geht das?
Mit meinem Ansatz, einfach mal "drauflos" zu beweisen, kam ich leider auch nicht weit:


[mm]"\Rightarrow"[/mm]
[mm]A \cup A'[/mm] aff. UR von V [mm]\Rightarrow[/mm] Es gibt [mm]x \in V, U \subset V[/mm], U Untervektorraum, sd. [mm]A \cup A' = x+U[/mm] [mm] \Rightarrow[/mm] Da $0 [mm] \in [/mm] U$ ist $x [mm] \in [/mm] A$ oder $x [mm] \in [/mm] A'$, also nehmen wir o.B.d.A. an $x [mm] \in [/mm] A$ [mm] $\Rightarrow$ [/mm] Da $A, A'$ affine UR, gibt es Untervektorräume $W, W' [mm] \subset [/mm] V, a' [mm] \in [/mm] V: A=x+W, A'=a'+W' [mm] \Rightarrow [/mm] (x+W) [mm] \cup [/mm] (a'+W') = x+U$ ... hier komme ich nicht weiter, verspreche mir aber auch nicht so viel von dem Ansatz.

[mm] $"\Leftarrow"$ [/mm]
$A [mm] \subset [/mm] A'$ oder $A' [mm] \subset [/mm] A$ [mm] $\Rightarrow$ [/mm] $A [mm] \cup [/mm] A' = A'$ affiner UR, oder $A [mm] \cup [/mm] A' = A$ affiner UR
Richtig?

Vielen Dank für eure Hilfe!

Viele Grüße, Lippel

        
Bezug
Vereinigung affiner Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 05.08.2010
Autor: PeterB

Hallo Lippel,

falls es ein Element [mm] $x\in A\cap [/mm] A'$ gibt, dann kannst du es auf den Fall von Untervektorräumen zurückführen. (Nach deinem Ansatz zu urteilen solltest du keine Probleme mit dem Beweis haben.)

Falls [mm] $A\cap A'=\emptyset$, [/mm] ist die Aussage für den Körper [mm] $K=\mathbb F_2$ [/mm] (Der Körper mit zwei Elementen) falsch. (Nimm z.B. einen Untervektorraum dessen Dimension eins kleiner ist als die von V und dessen Komplement.) Für alle Körper mit mehr Elementen kann man zeigen, dass es in diesem Fall einen Untervektorraum W von V und [mm] $a\in [/mm] A$ und [mm] $a'\in [/mm] A'$ gibt mit [mm] $A\subset [/mm] a+W$ und [mm] $A'\subset [/mm] a'+W$ sowie [mm] $A\cap (a'+W)=\emptyset$ [/mm] und [mm] $A'\cap (a'+W)=\emptyset$. [/mm] Dies kann man falls K mehr als zwei Elemente hat zum Widerspruch führen.  

Gruß
Peter  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]