matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVereinigung / Untervektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Vereinigung / Untervektorraum
Vereinigung / Untervektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung / Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 14.11.2011
Autor: Balodil

Aufgabe
Sei V ein K-Vektorraum und [mm] U_1, U_2 [/mm] seien Untervektorräume von V. Zeige:

[mm] U_1 \cup U_2 [/mm] ist Untervektorraum von V [mm] \gdw U_1 \subset U_2 [/mm] oder [mm] U_2 \supset U_1 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Schönen guten Abend!

Ich fange mit der Hinrichtung an:
D.h. ich weiß also das [mm] U_1 \cup U_2 [/mm] ein Untervektorraum ist und die entsprechenden Axiome gelten:

(1)  [mm] V\neq\emptyset [/mm]  bzw.  [mm] 0\in [/mm] V

(2) Für alle  [mm] x,y\in [/mm]  V ist die Summe  [mm] x+y\in [/mm]  V

(3) Für alle  [mm] \lambda\in [/mm] K, [mm] x\in [/mm] V  ist auch  [mm] \lambda\cdot{}x\in [/mm] V

Nur wie wende ich das jetzt an? Wie kann ich den Beweis beginnen?

ZUr RÜckrichtung:
DIe VOrraussetzung ist nun [mm] U_1 \subset U_2 [/mm]
Nun muss irgendwie gezeigt werden das die Vereinigung ein Vektorraum ist. In der Vorlesung haben wir gezeigt, dass wenn U,V UVR sind ist deren Durchscnitt bzw. Summe wieder ein UVR. Aber das kann ich hier ja auch nicht anwenden ... Wir fängt man hier am besten an?

        
Bezug
Vereinigung / Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Mo 14.11.2011
Autor: leduart

Hallo

> Sei V ein K-Vektorraum und [mm]U_1, U_2[/mm] seien Untervektorräume
> von V. Zeige:
>  
> [mm]U_1 \cup U_2[/mm] ist Untervektorraum von V [mm]\gdw U_1 \subset U_2[/mm]
> oder [mm]U_2 \supset U_1[/mm]
>  Ich habe diese Frage in keinem Forum
> auf anderen Internetseiten gestellt.
>  
> Schönen guten Abend!
>  
> Ich fange mit der Hinrichtung an:
>  D.h. ich weiß also das [mm]U_1 \cup U_2[/mm] ein Untervektorraum
> ist und die entsprechenden Axiome gelten:
>  
> (1)  [mm]V\neq\emptyset[/mm]  bzw.  [mm]0\in[/mm] V
>
> (2) Für alle  [mm]x,y\in[/mm]  V ist die Summe  [mm]x+y\in[/mm]  V
>  
> (3) Für alle  [mm]\lambda\in[/mm] K, [mm]x\in[/mm] V  ist auch  
> [mm]\lambda\cdot{}x\in[/mm] V

warum schreibst du hier V und nicht [mm] $U_1 \cup U_2$? [/mm] das fürt dich nur in die irre und [mm] x,y\in U_1 \cup U_2 [/mm]
dann wähl mal besser u1 und u2 aus U1 und U2 wann gehört dann u1+u2 auch zu [mm] U_1 \cup U_2? [/mm]

>
> Nur wie wende ich das jetzt an? Wie kann ich den Beweis
> beginnen?
>  
> ZUr RÜckrichtung:
>  DIe VOrraussetzung ist nun [mm]U_1 \subset U_2[/mm]
>  Nun muss
> irgendwie gezeigt werden das die Vereinigung ein Vektorraum
> ist. In der Vorlesung haben wir gezeigt, dass wenn U,V UVR
> sind ist deren Durchscnitt bzw. Summe wieder ein UVR. Aber
> das kann ich hier ja auch nicht anwenden ... Wir fängt man

was ist denn [mm] U_1 \cup U_2 [/mm] wenn [mm] $U_1 \subset U_2$ [/mm] und wenn [mm] $U_2 \subset U_1$ [/mm]
ist?
Gruss leduart.


Bezug
                
Bezug
Vereinigung / Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Mo 14.11.2011
Autor: Balodil


> warum schreibst du hier V und nicht [mm]U_1 \cup U_2[/mm]? das fürt
> dich nur in die irre und [mm]x,y\in U_1 \cup U_2[/mm]
>  dann wähl
> mal besser u1 und u2 aus U1 und U2 wann gehört dann u1+u2
> auch zu [mm]U_1 \cup U_2?[/mm]
>  >

Sei also [mm] u_1 [/mm] und [mm] u_2 [/mm] aus [mm] U_1 [/mm] und [mm] U_2 [/mm] => [mm] u_1 [/mm] + [mm] u_2 \in U_1 \cap U_2 [/mm]
daraus folgt [mm] u_1 [/mm] und [mm] u_2 [/mm] aus [mm] U_1 [/mm] oder [mm] U_2 [/mm] => [mm] u_1 [/mm] + [mm] u_2 \in U_1 \cup U_2 [/mm]
=> [mm] U_1 [/mm] muss in [mm] U_2 [/mm] liegen oder [mm] U_2 [/mm] in [mm] U_1 [/mm]

so etwa???

>  >  
> > ZUr RÜckrichtung:
>  >  DIe VOrraussetzung ist nun [mm]U_1 \subset U_2[/mm]
>  >  Nun muss
> > irgendwie gezeigt werden das die Vereinigung ein Vektorraum
> > ist. In der Vorlesung haben wir gezeigt, dass wenn U,V UVR
> > sind ist deren Durchscnitt bzw. Summe wieder ein UVR. Aber
> > das kann ich hier ja auch nicht anwenden ... Wir fängt man
>
> was ist denn [mm]U_1 \cup U_2[/mm] wenn [mm]U_1 \subset U_2[/mm] und wenn [mm]U_2 \subset U_1[/mm]
>  
> ist?

Dann ist [mm] U_1 \cup U_2 [/mm] = [mm] U_1 [/mm] = [mm] U_2 [/mm] und damit wäre die Rückrichtung beweisen, aber hier steht ja "oder" ... [mm] U_1 \subset U_2 [/mm] oder [mm] U_2 \subset U_1 [/mm] ???

>  Gruss leduart.
>  

vielen Dank :)
lg Balodil

Bezug
                        
Bezug
Vereinigung / Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mo 14.11.2011
Autor: leduart

hallo
wenn u1 in U! und u2 in U2 warum soll dann u1+u2 in [mm] U1\cup [/mm] U2 liegen?
Bsp . U1=span{(1,0)}  U2=span{(0,1) }  liegt (1,1) in [mm] U1\cup [/mm] U2?
Gruss leduart


Bezug
                                
Bezug
Vereinigung / Untervektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Mo 14.11.2011
Autor: Balodil


> hallo
>  wenn u1 in U! und u2 in U2 warum soll dann u1+u2 in [mm]U1\cup[/mm]
> U2 liegen?
>  Bsp . U1=span{(1,0)}  U2=span{(0,1) }  liegt (1,1) in
> [mm]U1\cup[/mm] U2?
>  Gruss leduart
>  

Ne (1,1) liegt nicht in [mm] U_1 \cup U_2 [/mm]
Also müsste [mm] U_1 \subset U_2 [/mm] oder [mm] U_2 [/mm] subset [mm] U_1 [/mm] sein, ansonsten stimmt die 2. Vorrausetzung für einen Untervektorraum nicht.
soll man so vorgehen?

lg Balodil

Bezug
                                        
Bezug
Vereinigung / Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Di 15.11.2011
Autor: leduart

Hallo
warum fragst du? überzeugt es dich nicht? du musst nur noch genauer formulieren.
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]