matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Vereinfachen und Potenzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Vereinfachen und Potenzieren
Vereinfachen und Potenzieren < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen und Potenzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Do 31.01.2008
Autor: macdos

Aufgabe
Vereinfache soweit als möglich und stelle mit positiven Exponenten dar:
[mm] (\bruch{-2a^{-1}}{3b^{-3}})^{-2}:(\bruch{6ab^{-3}}{a^{-1}b^{2}})^{3}= [/mm]

Ich hab das schon eine Stunde lang probiert aber irgendwie schaffe ich das nicht.
Hier mein Versuch:
[mm] (\bruch{-2a^{-1}}{3b^{-3}})^{-2}:(\bruch{6ab^{-3}}{a^{-1}b^{2}})^{3}= [/mm]

[mm] =\bruch{-0,25a^{2}}{\bruch{1}{9}b^{6}}:\bruch{216a^{3}b^{-9}}{a^{-3}b^{6}}= [/mm]

[mm] =\bruch{-\bruch{1}{4}\bruch{a^{2}}{1}}{\bruch{1}{9}\bruch{b^{6}}{1}}:\bruch{216a^{3}b^{-9}}{a^{-3}b^{6}}= [/mm]

[mm] =\bruch{-\bruch{-a^{2}}{4}}{\bruch{b^{6}}{9}}:\bruch{218a^{3}b^{-9}}{a^{-3}b^{6}}= [/mm]

[mm] =\bruch{\bruch{4b^{6}}{-9a^{2}}}{\bruch{216a^{3}b^{-9}}{a^{-3}b^{6}}}= [/mm]

und wenn ich dann [mm] \bruch{Innenglied * Innenglied}{Aussenglied * Aussenglied} [/mm] rechne, kommt das raus:

[mm] =\bruch{-9a^{2}216a^{3}b^{-9}}{4b^{6}a^{-3}b^{6}} [/mm]

Ich habe keine Ahnung wie ich da weiterkürzen soll. Ist das bis jetzt überhaupt richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Liebe Grüße
David

        
Bezug
Vereinfachen und Potenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Do 31.01.2008
Autor: DaReava

Hallo!

Der einzige Fehler, der mir jetzt beim Überfliegen der Aufgabe aufgefallen wäre, ist dass
$ [mm] (-2a^{-1})^{-2} [/mm] = [mm] (\bruch{1}{(-2)^2 }* a^2) [/mm] $ , also
$ [mm] \bruch{1}{4} [/mm] $ , nicht $ - [mm] \bruch{1}{4} [/mm] $
Und dein letzter Bruch stimmt wohl eher nicht, aber ich habe das nicht überprüft-


Ich denke das Hauptproblem ist, dass du dir die ganze Sache unnötig schwierig machst:

Es lassen sich doch die ganzen Komplizierten Brüche auf eine "schönere" Form bringen-

Es gilt ja: [mm] \bruch{a}{b} : \bruch{c}{d} = \bruch{a}{b} * \bruch{d}{c} [/mm]

Beachte, dass das auch bedeutet:

[mm] \bruch{\bruch{a}{b}}{\bruch{c}{d}} = \bruch{a}{b} * \bruch{d}{c} [/mm]

Damit sollte die Aufgabe recht einfach zu lösen sein,
weil du damit von anfang ankomplizierte Ausdrücke vermeiden kannst.


mfg reava


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]