matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenVereinfachen einer Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Vereinfachen einer Summe
Vereinfachen einer Summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen einer Summe: Übungen
Status: (Frage) beantwortet Status 
Datum: 23:26 Do 18.11.2010
Autor: Randomize

Aufgabe
Berechnen Sie: [mm] \vektor{n \\ 0}+3 \vektor{n \\ 1}+ [/mm] 5 [mm] \vektor{n \\ 2}+...+(2n+1) \vektor{n \\ n} [/mm]

Hallo,
wollte mal fragen, ob mir bei der Aufgabe vielleicht jemand weiterhelfen könnte.Der zweidimensionale Vektor soll ein Binomialkoeffizient sein. Ich habe bereits versucht die Aufgabe zu lösen und bin mir nicht sicher, ob mein Lösungsansatz richtig ist oder ob der Ausdruck sich noch vereinfachen lässt. Ich habe die Summanden so zerlegt, dass ich folgenden Ausdruck habe:
[mm] \summe_{k=1}^{n} [/mm] (2k+1) [mm] \vektor{n \\ k} [/mm]
[mm] =\summe_{k=1}^{n} [/mm] (2k+1) n!/(k!(n-k)!)

Da habe ich das ganze nochmal in zwei Summenzeichen zerlegt, allerdings bezweifle ich, dass das den Ausdruck noch weiter vereinfachen könnte. Also wenn jemand von euch ne Idee hat, ich würde mich freuen. Vielen Dank im voraus.
Gruss

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vereinfachen einer Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:40 Do 18.11.2010
Autor: Gonozal_IX

Huhu,

das kann man schon noch schöner hinschreiben.

Du kannst entweder per vollständiger Induktion beweisen, dass

$ [mm] \summe_{k=0}^{n} [/mm] (2k+1)  [mm] \vektor{n \\ k} [/mm] = [mm] (n+1)2^n$ [/mm] gilt (übrigens fängt die Summe bei $k=0$ an), oder du überlegst dir, wie man das aus der Summenformel herausfinden kann durch geschickte Umordnung und ausnutzen von

$ [mm] \summe_{k=0}^{n} \vektor{n \\ k} [/mm] = [mm] 2^n$ [/mm]

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]