matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperVerband
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Verband
Verband < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verband: Kleinstes Element
Status: (Frage) beantwortet Status 
Datum: 13:44 Do 08.07.2010
Autor: tinakru

Aufgabe
Im reellen Einheitsintervall [0;1] sei L = {[a;b] / a,b aus [0,1]}. Zeigen sie dass die durch Inklusion teilweise geordnete Menge L ein beschränkter Verband ist.

Hallo zusammen,

Ich habe bereits gezeigt dass es sich um einen Verband handelt.
Für beschränkt muss ich ja zeigen, dass er ein größtes und kleines Element hat.
Das größte Element ist [0;1], da jedes andere Intervall in diesem enthalten ist.

Aber was ist das kleinste Element von L?
Ich komm da einfach nicht drauf. Wenn ich z.B. zwei Intervall habe:
[0,5; 0,8] und [0,1; 0,3]
Dann gibt es doch gar kein kleinestes Element, das in beiden drinnen liegt?

Ich vermute dass ich da irgendwie zu komliziert denke. Vielleicht kann mir ja jemand mal helfen.
Danke schon mal!
Bis später

        
Bezug
Verband: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Do 08.07.2010
Autor: felixf

Moin Tina,

> Im reellen Einheitsintervall [0;1] sei L = {[a;b] / a,b aus
> [0,1]}. Zeigen sie dass die durch Inklusion teilweise
> geordnete Menge L ein beschränkter Verband ist.
>  Hallo zusammen,
>  
> Ich habe bereits gezeigt dass es sich um einen Verband
> handelt.
> Für beschränkt muss ich ja zeigen, dass er ein größtes
> und kleines Element hat.
>  Das größte Element ist [0;1], da jedes andere Intervall
> in diesem enthalten ist.
>  
> Aber was ist das kleinste Element von L?
>  Ich komm da einfach nicht drauf. Wenn ich z.B. zwei
> Intervall habe:
>  [0,5; 0,8] und [0,1; 0,3]
>  Dann gibt es doch gar kein kleinestes Element, das in
> beiden drinnen liegt?

kann es sein, dass $[a, b]$ mit $a > b$ bei euch die leere Menge ist?

LG Felix


Bezug
                
Bezug
Verband: Miniumum
Status: (Frage) beantwortet Status 
Datum: 19:00 Do 08.07.2010
Autor: tinakru

Aufgabe
siehe oben

Hallo,

ob das die leere Menge ist, wenn a > b ist, weiß ich nicht. So wie die Aufgabe gestellt ist, wurde sie von einem Mathe-Prof in einer Klausur wortwörtlich gestellt.

Aber wird wahrscheinlich dann schon so sein, dass es die leere Menge ist, weil sonst gibts ja kein Miniumum  oder?

Bezug
                        
Bezug
Verband: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Do 08.07.2010
Autor: felixf

Moin,

> ob das die leere Menge ist, wenn a > b ist, weiß ich
> nicht. So wie die Aufgabe gestellt ist, wurde sie von einem
> Mathe-Prof in einer Klausur wortwörtlich gestellt.

ok.

> Aber wird wahrscheinlich dann schon so sein, dass es die
> leere Menge ist, weil sonst gibts ja kein Miniumum  oder?

Genau...

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]