matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreVerbände & Hasse-Diagramm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Verbände & Hasse-Diagramm
Verbände & Hasse-Diagramm < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verbände & Hasse-Diagramm: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:26 Sa 23.02.2013
Autor: Avinu

Aufgabe 1
Betrachte die Partielle Ordnung $PO = (D, [mm] \subseteq)$ [/mm] mit dem Domain $D = [mm] \{\{a\}, \{b\}, \{a,b\}\}$. [/mm] Handelt es sich um einen Verband?

Aufgabe 2
Betrachte den Graph $G = (V,E)$ mit $V = [mm] \{1, 2, 3, 4, 5\}$ [/mm] und $E = [mm] \{\{1,2\}, \{1,3\} \{2,4\}, \{3,4\}, \{4,5\}\}$. [/mm] Repräsentiert er einen Verband?

(In der Original Aufgabe war der Graph nur graphisch dargestellt. Die textuelle Beschreibung stammt von mir)

Ich hab die Lösungen zu beiden Aufgaben.

Bei der ersten wurde gesagt, es sei kein Verband, da [mm] $\emptyset$ [/mm] keine kleinste obere Schranke hat weil ${a}$ und ${b}$ zwar obere Schranken sind, aber unvergleichbar. Leuchtet mir ein.

Zur zweiten Aufgabe wurde gesagt, es sei ein Verband. Das ist für mich aber ein Widerspruch zur Aussage der ersten Aufgabe. Denn nehme ich mir z.B. den Domain $D = [mm] \{\{\}, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ [/mm] und die Teilmengenbeziehung, dann kann ich doch dem Knoten 1 die leere Menge "zuweisen", 2 die Menge {a}, 3 die Menge {b}, 4 die Menge {a,b} und 5 die Menge {a,b,c}. Und dann habe ich doch wieder das Problem, dass [mm] $\emptyset$ [/mm] keine kleinste obere Schranke hat, weil {a} und {b} unvergleichbar sind?

Wo ist mein Denkfehler?

        
Bezug
Verbände & Hasse-Diagramm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 So 03.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]