matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVerallgemeinerter MWS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Verallgemeinerter MWS
Verallgemeinerter MWS < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinerter MWS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Do 13.03.2008
Autor: cauchy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute, ich hoffe ihr könnt mir helfen. In unserer Mathevorlesung (Analysis I) wurde der verallgemeinerte Mittelwertsatz wie folgt definiert:

Seien f,g: [a,b] [mm] \to \IR [/mm] stetig. Seien f und g diff'bar in ]a,b[. Dann existiert [mm] \xi \in [/mm] ]a,b[ mit
[f(b)-f(a)] [mm] g'(\xi) [/mm] = [g(b)-g(a)] [mm] f'(\xi) [/mm]

Den Satz kann ich soweit "akzeptieren" und habe mir auch schon ein Beispiel konstruiert mit [mm] f(x)=(x-1)^2 [/mm] und [mm] g(x)=x^3 [/mm] im Intervall [-2,2] und [mm] \xi=\bruch{2}{3} [/mm] berechnet, nur leider weiß ich überhaupt nicht, was dieser Satz bedeutet! Wofür ist er wichtig? Was bedeutet er graphisch? Was sagt mir denn z. B. dass [mm] \xi=\bruch{2}{3} [/mm] ist? Was ist bei dieser Stelle?

Mein Problem kommt hauptsächlich dadurch zustande, dass ich den 1. MWS verstehe und weiß, was er graphisch bedeutet.

Danke im Voraus!



        
Bezug
Verallgemeinerter MWS: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Do 13.03.2008
Autor: Somebody


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo Leute, ich hoffe ihr könnt mir helfen. In unserer
> Mathevorlesung (Analysis I) wurde der verallgemeinerte
> Mittelwertsatz wie folgt definiert:
>  
> Seien f,g: [a,b] [mm]\to \IR[/mm] stetig. Seien f und g diff'bar in
> ]a,b[. Dann existiert [mm]\xi \in[/mm] ]a,b[ mit
>  [f(b)-f(a)] [mm]g'(\xi)[/mm] = [g(b)-g(a)] [mm]f'(\xi)[/mm]
>  
> Den Satz kann ich soweit "akzeptieren" und habe mir auch
> schon ein Beispiel konstruiert mit [mm]f(x)=(x-1)^2[/mm] und
> [mm]g(x)=x^3[/mm] im Intervall [-2,2] und [mm]\xi=\bruch{2}{3}[/mm]
> berechnet, nur leider weiß ich überhaupt nicht, was dieser
> Satz bedeutet! Wofür ist er wichtig? Was bedeutet er
> graphisch?

Zur "graphischen Bedeutung" hilft es vielleicht, einmal anzunehmen, dass [mm] $g'(\xi)$ [/mm] und $g(b)-g(a) [mm] \neq [/mm] 0$ sind. In diesem Fall kann man anstelle von

[mm] [f(b)-f(a)] g'(\xi) = [g(b)-g(a)] f'(\xi)[/mm]

schreiben

[mm] \frac{\red{\frac{f(b)-f(a)}{b-a}}}{\blue{\frac{g(b)-g(a)}{b-a}}} = \frac{\red{f'(\xi)}}{\blue{g'(\xi)}}[/mm]

das heisst: es gibt ein [mm] $\xi\in [/mm] ]a;b[$ für das das Verhältnis der Ableitungen [mm] $f'(\xi)$, $g'(\xi)$ [/mm] gleich dem Verhältnis der Sekantensteigungen ist.


Bezug
                
Bezug
Verallgemeinerter MWS: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:56 Do 13.03.2008
Autor: cauchy

Ok, danke, das hilft mir schon weiter!
Aber: Warum ist es das gleiche ob ich

$ [mm] \frac{{\frac{f(b)-f(a)}{b-a}}}{{\frac{g(b)-g(a)}{b-a}}} [/mm] = [mm] \frac{{f'(\xi)}}{{g'(\xi)}} [/mm] $

oder

$ [mm] \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)} [/mm] $

(wenn ich annehme, dass g(b)-g(a) [mm] \not= [/mm] 0 [mm] \not= g'(\xi) [/mm] )

betrachte?

Und noch eine Frage: Ist diese Stelle [mm] \xi \in [/mm] ]a,b[ wichtig?

Bezug
                        
Bezug
Verallgemeinerter MWS: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Do 13.03.2008
Autor: Somebody


> Ok, danke, das hilft mir schon weiter!
>  Aber: Warum ist es das gleiche ob ich
>  
> [mm]\frac{{\frac{f(b)-f(a)}{b-a}}}{{\frac{g(b)-g(a)}{b-a}}} = \frac{{f'(\xi)}}{{g'(\xi)}}[/mm]
>  
> oder
>  
> [mm]\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}[/mm]
>  
> (wenn ich annehme, dass g(b)-g(a) [mm]\not=[/mm] 0 [mm]\not= g'(\xi)[/mm] )
>  
> betrachte?

Du darfst ja den Bruch [mm] $\frac{f(b)-f(a)}{g(b)-g(a)}$ [/mm] mit dem Faktor [mm] $\frac{1}{b-a}$ [/mm] erweitern, ohne dass dadurch sein Wert verändert würde.

>  
> Und noch eine Frage: Ist diese Stelle [mm]\xi \in[/mm] ]a,b[
> wichtig?

Jedenfalls kannst Du nicht erwarten, dass diese Beziehung für jedes beliebige [mm] $\xi\in [/mm] ]a;b[$ gilt.


Bezug
                                
Bezug
Verallgemeinerter MWS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Fr 14.03.2008
Autor: cauchy


> Du darfst ja den Bruch [mm]\frac{f(b)-f(a)}{g(b)-g(a)}[/mm] mit dem
> Faktor [mm]\frac{1}{b-a}[/mm] erweitern, ohne dass dadurch sein Wert
> verändert würde.  

Stimmt! Ich hatte übersehen, dass sich ja bei dem Doppelbruch [mm] \frac{{\frac{f(b)-f(a)}{b-a}}}{{\frac{g(b)-g(a)}{b-a}}}$ [/mm] der Nenner b-a rauskürzt!

Vielen Dank, Somebody, ich denke die Beziehung der beiden MWS ist mir jetzt schon viel klarer geworden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]