matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorunterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorunterräume
Vektorunterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorunterräume: Beweis
Status: (Frage) beantwortet Status 
Datum: 01:01 Do 05.11.2009
Autor: Arisen89

Aufgabe
Seien U1 und U2 zwei Unterräume eines reellen Vektorraumes V.
(a) Beweisen Sie, dass der Durschnitt von U1 und U2 auch ein Unterraum von V ist.  

Ich weiss, dass man die 2 axiomen von Unterräumen beweisen soll. Aber jetzt weiss ich nicht wo ich anfangen soll. Eigentlich habe ich versucht v=v1+v2 [mm] \in [/mm] U1 und w=w1+w2 [mm] \in [/mm] U2 und dann :

(v1+v2) + (w1+w2) = (v1+w1) + (v2+w2) dann weiss es nicht :( Hilfe bitte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorunterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 05:30 Do 05.11.2009
Autor: angela.h.b.


> Seien U1 und U2 zwei Unterräume eines reellen Vektorraumes
> V.
>  (a) Beweisen Sie, dass der Durschnitt von U1 und U2 auch
> ein Unterraum von V ist.

> Ich weiss, dass man die 2 axiomen von Unterräumen beweisen
> soll.

Hallo,

Du meinst die Unterraumkriterien.
Das sind drei und nicht zwei: es gehört noch dazu, daß [mm] U\not=\emptyset [/mm] - und das ist wichtig.


> Aber jetzt weiss ich nicht wo ich anfangen soll.

Kühlen Kopf bewähren.

Zu zeigen ist hier also:

1. [mm] U_1\cap U_2\not=\emptyset [/mm]

2. [mm] v_1, v_2\in U_1\cap U_2 [/mm]  ==> [mm] v_1+v_2\in U_1\cap U_2 [/mm]

3. [mm] v\in U_1\cap U_2, \lambda\in \IR [/mm] ==> [mm] \lambda [/mm] v [mm] \in U_1\cap U_2 [/mm]


Nun mal zu den Voraussetzungen:
es ist vorausgesetzt, daß [mm] U_1 [/mm] und [mm] U_2 [/mm] Unterräume von V sind.

also gilt (i=1,2)

          1. [mm] U_i\not=\emptyset [/mm]

          2. [mm] v_1, v_2\in U_i [/mm]  ==> [mm] v_1+v_2\in U_i [/mm]

          3. [mm] v\in U_i, \lambda\in \IR [/mm] ==> [mm] \lambda [/mm] v [mm] \in U_i [/mm]


Jetzt kommt der Beweis:

zu1:  [mm] U_1 [/mm] und [mm] U_2 [/mm] sind nach Voraussetzung Unterräume, also Vektorräume. Welches Element ist in jedem VR enthalten?
Folglich ist es auch im Schnitt.

zu 2.  Seien [mm] v_1, v_2\in U_1\cap U_2. [/mm]
Nun muß man sich mal überlegen, was es bedeutet, daß die im Schnitt liegen:

==> [mm] v_1, v_2\in U_1 [/mm]  und [mm] v_1, v_2\in U_2 [/mm]

==> inwelchen Räumen liegt weshalb die Summe?

==> bedenke hier, was "Durchschnitt" bedeutet

zu 3.  Das geht sehr ähnlich.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]