matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorrechung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechung
Vektorrechung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechung : Frage zur Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:01 Sa 09.04.2005
Autor: Marie

Hallo ihr lieben!
In der Schule haben wir folgende Aufgabe zu rechnen bekommen:
Es geht um die Seitenhalbierenden eines Dreiecks..

A (2/0/1) B(3/2/1) C(5/6/4)  (Punkte des Dreiecks)

Behauptung: Die Seitenhalbierenden schneiden sich in einem Punkt.

.. so.. bei der Lösung der Seitenhalbierenden [mm] s_{a} [/mm] haben wir folgendes herausbekommen:

[mm] s_{a} [/mm] : x = [mm] \vektor{2 \\ 0 \\ 1} [/mm] + r * 1/2 [ ( [mm] \vektor{1 \\ 2 \\ 0} [/mm] ) + (  [mm] \vektor{3 \\ 6 \\ 3} [/mm] ) =  ... (die Parameterdarstellung)

ich verstehe nun nicht, warum man die vektoren mit 1/2 malnehmen muss. ich hätte die jetzt einfach ohne die 1/2 so geschrieben!! könnte mir da jemand weiterhelfen?
marie

        
Bezug
Vektorrechung : Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Sa 09.04.2005
Autor: banachella

Hallo Marie!

Die Seitenhalbierende [mm] $s_a$ [/mm] ist die Gerade, den Punkt $A$ durchläuft und den Punkt, der genau auf der Hälfte zwischen $B$ und $C$ liegt, diesen bezeichne ich jetzt mal mit $A'$.
Vom Ursprung aus kommt man zu $A'$, indem man erst zu $B$ geht, und dann die Hälfte des Weges nach $C$ zurücklegt. Also:
[mm] $A'=B+\bruch{1}{2}(C-B)=\bruch{1}{2}(B+C)=\bruch{1}{2}\left(\vektor{3\\2\\1}+\vektor{5\\6\\4}\right)$. [/mm]
Jetzt stellst du die Gleichung der Gerade [mm] $s_a$ [/mm] auf, die durch $A$ und $A'$ läuft:
[mm] $s_a(r)=A+r*(A'-A)=\vektor{2\\0\\1}+r*\bruch{1}{2}\left(\vektor{1\\2\\0}+\vektor{3\\6\\3} \right)$. [/mm]
So hast du es wahrscheinlich schon in deinem Heft stehen, ich schreib's nur nochmal der Vollständigkeit halber hin.
Jedenfalls kommt der Faktor [mm] $\bruch{1}{2}$ [/mm] vom Rechenweg.
Aber: Weglassen könntest du es jetzt trotzdem. Denn $r$ durchläuft die reellen Zahlen und durch eine sogenannte Transformation $t=2r$ kämest du dann auf dieselbe Gerade, aber ohne den Faktor [mm] $\bruch{1}{2}$, [/mm] und jetzt eben abhängig von $t$ statt von $r$.

Langer Rede kurzer Sinn: Du MUSST es nicht mit [mm] $\bruch{1}{2}$ [/mm] malnehmen. Es kommt nur durch den Rechenweg so heraus. Und wenn du es weglässt solltest du auf jeden Fall eine kurze Bemerkung dazu machen.

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]