matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorrechnung/Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechnung/Ebenen
Vektorrechnung/Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung/Ebenen: Teilaufgabe 1d
Status: (Frage) beantwortet Status 
Datum: 19:00 So 21.08.2005
Autor: Bina02

Hallo erneut! :)

So hier nun die letzte Teilaufgabe, die jedoch auch mein größtes Problem darstellt.

Wie gewohnt erst einmal wieder die Ausgangsaufgabe:

Betrachten sie im [mm] R^3 [/mm] die Punkte Ax( -x;-8;1),  Bx(4;-4;2x) und
C (0;-8;4).
Die Ebene, die durch diese drei Punkte bestimmt wird, nennen wir Ex.



Teilaufgabe d)  Für jedes u [mm] \in \IR [/mm] ist ein Punkt Du (4,-2*u,u-6) gegeben.
Zeigen sie dass alle Punkte Du auf einer Geraden h liegen und geben sie die Gleichung dieser Geraden h an. Welche Beziehung hat h zu E–2 ?


- Leider hänge ich hier, wie gesagt ganz schön fest. Mein einziger Ansatz bzw. Überlegung besteht darin, dass die allgemeine Geradengleichung für h wie folgt lautet:

h: [mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + s* [mm] \vec{u} [/mm]   und   [mm] \vec{P} [/mm] = (4, -2u,u-6)

, so dass

[mm] \vec{P} [/mm] = [mm] \vec{a} [/mm] + s* [mm] \vec{u} [/mm]


=> (4,-2u,u-6) = (a1,a2,a3) + s* (u1,u2,u3)   =>


I.  4 = a1+ s*u1
II. –2u = a2 + s*u2  
III. u-6 = a3 +s*u3


Was meint ihr dazu? Bin wirklich für jeden Ansatz dankbar.

Viele liebe Grüße und tausend Dank im voraus,

Sabrina  :)


        
Bezug
Vektorrechnung/Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 21.08.2005
Autor: djmatey

Abermals hi Bina :-)
Zunächst wollen wir mal zeigen, dass alle Punkte  [mm] D_{u} [/mm] auf einer Geraden liegen:
Setze zwei beliebige u's ein , z.B. 1 und 2 - Du erhältst [mm] D_{1} [/mm] und [mm] D_{2}. [/mm]
Stelle eine Gerade durch diese Punkte auf. Es sollte heraus kommen:
[mm] \vec{x} [/mm] = (4,-2,-5) + r*(0,-2,1)
Nun kannst Du, wie Du auch geschrieben hast, den Punkt [mm] D_{u} [/mm] für x einsetzen, d.h. kontrollieren, ob er auf der Geraden liegt (allgemein für u).
Man erhält eine eindeutige Lösung, nämlich r= u-1, das solltest Du Dir mal überlegen, d.h. für jedes u liegt [mm] D_{u} [/mm] auf der Geraden. Juchuu!
Jetzt die Lage der Geraden zu [mm] E_{-2}: [/mm]
Setze die Geraden - und die Ebenengleichung gleich, um den (eventuell vorhandenen) Schnittpunkt zu finden. Das Gleichungssystem sollte keine eindeutige Lösung haben, d.h. die Gerade liegt in der Ebene.
Ich empfehle Dir, nicht bloß diese Lösung zu nehmen, sondern das nachzurechnen!
Mit den besten Grüßen :-)
djmatey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]