matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorrechnung / Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektorrechnung / Ebenen
Vektorrechnung / Ebenen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung / Ebenen: Tipp bzw. Idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:42 So 12.03.2006
Autor: ghostrifle

Aufgabe
Gegeben ist die Ebene e1:  [mm] \vec{x} [/mm] =  [mm] \vektor{1 \\ -1 \\ 2} [/mm] +  [mm] \lambda \vektor{1 \\ 0 \\ -2} [/mm] + [mm] \mu \vektor{0 \\ 1 \\ 2}. [/mm]

Bestimmen Sie für die Ebenengleichung e2:  [mm] \vec{x} [/mm] =  [mm] \vektor{-2 \\ a \\ 0} [/mm] +  [mm] \lambda \vektor{1 \\ -2 \\ b} [/mm] + [mm] \mu \vektor{c \\ 2 \\ 8} [/mm] die reellen Zahlen a,b,c so dass e1 und 2 die gleiche Ebene darstellen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich bräuchte einen kleinen Denkanstoss wie ich diese Aufgabe bewältigen kann.

Mir ist klar, dass wenn das Vektorprodukt der beiden Normalvektoren der Ebenen 0 ergibt, diese Ebenen zueinander parallel sind. Das heisst ich muss guckn dass ich n1 [mm] \times [/mm] n2 = 0 kriege.

Mir würde jetzt auf Anhieb einfallen die beiden Gleichungen der Normalvektoren einzusetzen wie folgt:

[mm] (\vec{a1} \times \vec{b1}) \times (\vec{a2} \times \vec{b2}) [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

.... und nun ?? Wenn dies der richtige Ansatz wäre, sollte ich diese Gleichung dann vollends ausschreiben so dass später ein lineares Gleichungssystem herauskommt ?? (wäre das überhaupt möglich??)

        
Bezug
Vektorrechnung / Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 So 12.03.2006
Autor: taura

Hallo ghostrifle!

Ich weiß nicht genau, ob dein Ansatz so richtig ist, aber ich habe mir mal einen anderen überlegt, und zwar Folgendes:

Wenn [mm] e_1 [/mm] unf [mm] e_2 [/mm] identisch sein sollen, bedeutet das, dass jeder Punkt von [mm] e_2 [/mm] auch in [mm] e_1 [/mm] liegen muss, also insbesondere, wenn ich für das [mm] \lambda [/mm] und [mm] \mu [/mm] in [mm] e_2 [/mm] konkrete Zahlen einsetze. Also mache ich folgendes: Setzte zuerst [mm] \lambda [/mm] und [mm] \mu [/mm] gleich 0. Dann erhalte ich folgende Gleichung: (ich nenne die Parameter in [mm] e_1 [/mm] der Übersichtlichkeit halber r und s)

[mm] $\vektor{1 \\ -1 \\ 2} [/mm] + r [mm] \vektor{1 \\ 0 \\ -2} [/mm] + s [mm] \vektor{0 \\ 1 \\ 2}=\vektor{-2 \\ a \\ 0}$ [/mm]

Das ergibt ein Gleichungssystem, das man nach a auflösen kann.

Als nächsten Schritt setze ich [mm] \lambda [/mm] gleich 1 und [mm] \mu [/mm] gleich Null. Nun kann ich nach b auflösen. Und im dritten Schritt setze ich [mm] \lambda [/mm] gleich 0 und [mm] \mu [/mm] gleich 1 und löse nach c auf.

Keine Ahnung, ob das viel zu umständlich ist, und es einen einfacheren Weg gibt, aber so sollte man zumindest auf die richtige Lösung kommen.

Hoffe das hilft dir weiter :-)

Gruß taura

Bezug
                
Bezug
Vektorrechnung / Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:45 So 12.03.2006
Autor: ghostrifle

Vielen Dank für die Antwort! Habe zuerst ein wenig gebraucht bis ich richtig kapiert habe, wie man dann weiterrechnet, aber irgendwann hab ich es irgendwie rausgehabt.> Hallo ghostrifle!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]