matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektorrechnung
Vektorrechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Beweisführung
Status: (Frage) beantwortet Status 
Datum: 20:08 So 04.09.2005
Autor: stevarino

Hallo

Hab folgende Aufgabe:
Zeige sie dass beliebige -vektoren a,b aus dem R3 stets (axb)*a=0 und (axb)*b=0 gilt.
Ich habs so probiert:
[mm] a=(a_{x};a_{y};a_{z}) b=(b_{x};b_{y};b_{z}) [/mm]

[mm] axb=(a_{y}b_{z}-a_{z}b_{y};a_{z}b_{x}-a_{x}b_{z};a_{x}b_{y}-a_{y}b_{x}) [/mm]

dann mit Vektor a skalar multipliziert

[mm] (axb)*=(a_{x}a_{y}b_{z}-a_{x}a_{z}b_{y};a_{y}a_{z}b_{x}-a_{y}a_{x}b_{z};a_{z}a_{x}b_{y}-a_{z}a_{y}b_{x}) [/mm]

jetzt hätte ich mir gedacht das sich was rauskürzt wenn man den Betrag ausrechnet tut sich aber nicht.

Meine 2 Variante wäre ähnlich nur mit der Änderung das ich den Vektor axb   als rechtwinklig auf a und b ist und wenn man jetzt in die Formel
(axb)*a=|axb|*|a|*cosphi  un da cos 90° =0 ist stimmts

Welcher Weg ist der Richtige???

danke Stevo

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 04.09.2005
Autor: Toellner


> Hallo
>  
> Hab folgende Aufgabe:
>  Zeige sie dass beliebige -vektoren a,b aus dem R3 stets
> (axb)*a=0 und (axb)*b=0 gilt.
>  Ich habs so probiert:
>  [mm]a=(a_{x};a_{y};a_{z}) b=(b_{x};b_{y};b_{z})[/mm]
>  
> [mm]axb=(a_{y}b_{z}-a_{z}b_{y};a_{z}b_{x}-a_{x}b_{z};a_{x}b_{y}-a_{y}b_{x})[/mm]
>  
> dann mit Vektor a skalar multipliziert

das ist der falsche Begriff, Du musst das Skalarprodukt bestimmen und das sieht abweichend von Deiner Version so aus:  
[mm](axb)*a=a_{x}a_{y}b_{z}-a_{x}a_{z}b_{y}+a_{y}a_{z}b_{x}-a_{y}a_{x}b_{z}+a_{z}a_{x}b_{y}-a_{z}a_{y}b_{x} = 0[/mm]
Wenn Du Dir das genau ansiehst, dann heben sich die Terme wechselseitig weg, z.B. [mm] a_{x}a_{y}b_{z} [/mm] im 1. Summanden und [mm] -a_{y}a_{x}b_{z} [/mm] im 2. Summanden, etc.

> Meine 2 Variante wäre ähnlich nur mit der Änderung das ich
> den Vektor axb   als rechtwinklig auf a und b ist und wenn
> man jetzt in die Formel
> (axb)*a=|axb|*|a|*cosphi  un da cos 90° =0 ist stimmts
>

Beide.

>  
> danke Stevo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]