Vektorrechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | M sei der Mittelpunkt der Seite CD. Stellen sie den Vektor AM mithilfe der Vektoren a und b dar. |
Also die Eckpunkte des Parallelograms lauten:
A(1/1)
B(11/2)
C(13/6)
D(3/5)
Klein a und b hab ich ja sind ja nur in anderer Schreibweise(untereinander) nun weiß ich aber nicht wie ich rechnen soll. Wir haten mal so eine ähnliche Aufgabe und da sollte man irgendwie raten oder so.
Wäre nett, wenn mir jemand irgendwie helfen könnte
Danke
|
|
|
|
ich glaub ich hab ne lösung
muss man vieleicht die beiden zahlen zusammen nehmen und dann die hälfte davon nehmen
also:
wäre es hier jetzt 8/5,5??????
hab 13 +3 davon die hälfte und 6+5 und davon die hälfte
also wäre supi wenn mir jemand sagen könnte ob das stimmt=))))
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:02 Fr 28.09.2007 | Autor: | Loddar |
Hallo Honey!
Das stimmt so mit der Berechnung des Mittelpunktes!
Gruß
Loddar
|
|
|
|
|
cool danke, ist ja gar nicht so schwer wie ich dachte
gruß honey=))))))
|
|
|
|
|
Kann man auf das Ergebnis (8/5,5) auch mit Hilfe der Vektoren a und b, sowie es in der Aufgabe steht, kommen? Also ich hab ja das Ergebnis, allerdings ohne die beieden Vektoren mit einzuschließen und hab jetzt auch schon versucht, aber ich komme nicht auf dieses Ergebnis
a=(1/1)
b=(11/2)
wäre nett, wenn mir jemand sagen könnte wie man mit hilfe dieser beiden vektoren auf das ergebnis kommt, weil ich habs ja eigentlich nur durch raten bw. einfach die hälfte zu nehmen raus bekommen. Danke schonmal im vorraus
|
|
|
|
|
ne skizze hab ich ja schon, ist ja ein paralleogramm
der punkt D liegt links oben und der Punkt C rechts oben und in der Mitte ist eben M, aber wie soll ich denn aus a und b AM machen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:39 Fr 28.09.2007 | Autor: | leduart |
Hallo honey
wie schon in meiner Mitteilung hast du nur den Punkt M berechnet.
AM ist doch der Vektor, der von A ausgeht und bei M landet.
wenn du nun bei A anfängst, und nach B läufst, dann läufst du den Vektor [mm] \vec{b} [/mm] was musst du dann noch tun um nach M zu kommen?
Welchen Vektor, wie weit?
Gruss leduart
|
|
|
|
|
nach c laufen?=)))
ich laufe von los nach b dann nach c und von c zu m
muss ich m-a rechnen?also x/y-1/1
|
|
|
|
|
man kann ja auch von b direkt zu m laufen , oder
also irgendwie schein ich das nicht zu verstehen, ist sicherlich nicht allzu schwer, aber wir haben das noch nicht gemacht =(((
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:00 Fr 28.09.2007 | Autor: | leduart |
Hallo
wo kommt plötzlich ein x,y her?
1. [mm] \vec{AD}=\vec{b}
[/mm]
[mm] 2.\vec{DC}=\vec{a}
[/mm]
3. [mm] \vec{DM}=1/2*\vec{a}
[/mm]
ich zeig dir en Bsp.:
So, wenn M1 die Mitte zwischen B und C ist, dann komm ich dahin von A indem ich erst [mm] \vec{a} [/mm] gehe, und dann die Hälfte von [mm] \vec{b}
[/mm]
Ist das klar?
also ist [mm] \vec{AM1}=\vec{a}+1/2*\vec{b}
[/mm]
So mach das jetzt entsprechend mit dem Mittelpunkt von DC.
|
|
|
|
|
also ich weiß jetzt nicht ob ich das richtig verstanden habe:
ich muss ja das ganzeA langlaufen und das ganze B und nur die hälfte von C
also hab ich jetzt
a+b+1/2*c( mit den Pfeilen auf den Buchstaben, natürlich)
oder soll ich von A gleich nach D laufen dannn würde ich d+1/2*c schreiben
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:18 Fr 28.09.2007 | Autor: | leduart |
Hallo
Was ist dein Vektor c? eigentlich doch dasselbe wie a, denn parallele Vektoren werden nicht unterschieden. Nur musst du aufpassen, wenn du den Vektor von A nach B a nennst dann ist er gleich dem Vektor von D nach C , das hatte ich schon geschrieben aber der Vektor, den du c nennst, ich nehm mal an er geht von C nach D ist das negative von a wee das also dein c ist dann gilt c=-a
Du solltest unbedingt für Punkte große Buchstaben verwenden, für Vektoren kleine oder die Verbindung, also [mm] \vec{a}=\vec{AB}=\vec{DC}=-\vec{CD}
[/mm]
"ganz A lang laufen" macht keinen Sinn, weil A ein Punkt .
ist!
so wie du läufst kommst du also wirklich nach M, wenn du in deine Gleichung a+b+1/2c jetzt c=-a einsetzt kommst du auf a+b-1/2a=b+1/2a und siehst du kannst auch mit b von A nach D laufen und von D nach M mit 1/2a, und hast dasselbe ergebnis schneller.
Man bzw. du musst dich daran gewöhnen, dass parallele Vektoren gleicher Länge gleich sind, den Unterschied zw. Punkten und Vektoren sehen. der Punkt A (1,2) liegt auf dem Vektor vom Punkt O (0,0) zum Punkt A, dieser Vektor ist dann [mm] \vec{OA}=\vec{r}=\vektor{1\\2}
[/mm]
aber [mm] \vec{r}=\vektor{1\\2} [/mm] geht auch von Punkt B=(4,7) zu Punkt C=(5,9)
Ich hoff jetzt ist dir das mit den Vektoren klarer!
(sie sind nicht einfach senkrecht statt waagerecht geschrieben!)
Gruss leduart
|
|
|
|
|
dankeschön für die Erläuterung, ja wir haben heute erst damit angefangen und haben gleich eben dieses aufgabe bekommen.trotzdem danke für deine hilfe und antwort
|
|
|
|
|
Status: |
(Korrektur) kleiner Fehler | Datum: | 19:26 Fr 28.09.2007 | Autor: | leduart |
Hallo
Loddar hat zwar recht damit, dass das die Koordinate des Mittelpunktes ist.
Aber das war nicht die Aufgabe! Bestimme AM war die Aufgabe. dabei nehm ich an, dass a der Vektor AB =Vektor DC und B der Vektor BC=Vektor AD ist, (wenns ein parllelogramm ist.
dann sind a und d Vektoren, A,B,C,D Punkte mit Koordinaten, oder Ortsvektoren von (0,0) aus zu diesen Punkten.
Du musst also um AM zu finden ne Skizze machen, a und b und M einzeichnen, und feststellen wie du aus a und b AM machst.
Gruss leduart
|
|
|
|