matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Vektorrechnen
Vektorrechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Mi 03.11.2010
Autor: emulb

Aufgabe
Zeigen Sie:

a) ( [mm] \vec [/mm] a  x [mm] \vec [/mm] b )² = a² b² -( [mm] \vec [/mm] a [mm] \vec [/mm] b )²
b) Es gelte [mm] \vec [/mm] a x [mm] \vec [/mm] r = [mm] \vec [/mm] a x  [mm] \vec [/mm] b. Gesucht ist [mm] \vec [/mm] r. Ist [mm] \vec [/mm] r = [mm] \vec [/mm] b die einzige Lösung?

Wie gehe ich da vor...muss ich die Axiome einzeln rechnen?

Wichtig! : Vektorpfeile sind auf a,b und r!!

        
Bezug
Vektorrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Do 04.11.2010
Autor: angela.h.b.


> Zeigen Sie:
>  
> a) ( [mm] \vec{a} x\vec{b} [/mm] )² = a² b² -(  [mm] \vec{a} \red{\*} \vec{b} [/mm] )²
>  b) Es gelte  [mm] \vec{a} [/mm] x  [mm] \vec{r} [/mm] =  [mm] \vec{a} [/mm] x  [mm] \vec{b}. [/mm] Gesucht
> ist\ vec{r}. Ist [mm] \vec{r} [/mm] = [mm] \vec{b} [/mm] die einzige Lösung?

>  Wie gehe ich da vor...

Hallo,

die Vektorpfeile hab ich für Dich jetzt dahin gepackt, wo sie hingehören. Beachte in Zukunft bitte die Eingabehilfen unterhalb des Eingabefensters.

Poste Deine Aufgaben sorgfältig, also mit dem genauen Aufgabentext.
Das Forum ist nämlich nicht als Aufgabentextquiz gedacht...

Ich hab' ja zum Glück meinen Raben Abraxas. Der hat gekrächzt:
"Es stand noch dabei, daß die Vektoren dem [mm] \IR^3 [/mm] entstammen sollen. Und ein Punkt fürs Skalarprodukt." Richtig? (Meist irrt er nicht.)
Ich hab' den Punkt rot eingefügt.

Mit a ist wohl [mm] |\vec{a}| [/mm] gemeint? Wie berechnet man eigentlich den Betrag eines Vektors?

> muss ich die Axiome einzeln
> rechnen?

Welche Axiome meinst Du?

Für a) sehe ich im wesentlichen zwei Möglichkeiten.

1. Du löst das, indem Du schreibst [mm] "\vec{a}=\vektor{a_1\\a_2\\a_3}", [/mm] für [mm] \vec{b} [/mm] entsprechend, und dann führst Du alle Skalar-, Kreuz- und sonstigen Produkte aus und guckst halt, ob rechts und links dasselbe zu stehen kommt.
Das ist die mühsame Variante.

2. Du erkennst, daß links das Quadrat des Betrages von [mm] \vec{a} [/mm] x [mm] $\vec$ \vec{b} [/mm] steht und weißt, welchen Betrag [mm] \vec{a} [/mm] x [mm] \vec{b} [/mm] hat.

Wenn Du dann noch weißt, was [mm] \vec{a}*\vec{b} [/mm] mit dem Betrag der beiden Vektoren und dem eingeschlossenen Winkel zu tun hat, bist Du dicht an der Lösung - übrigens vermisse ich jeglichen auch noch so zaghaften Lösungsansatz in Deinem Post.

zu b) Bist Du jetzt erstmal dran. was hast Du Dir denn überlegt?
Was weißt Du übers Kreuzprodukt? Richtung v. [mm] \vec{a} [/mm] x [mm] \vec{b}, [/mm] Betrag?
Wo findet man den Betrag anschaulich?

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]