Vektorraumaxiome nachweisen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:32 Mi 30.01.2008 | Autor: | jura |
Aufgabe | Weisen Sie nach, dass die Menge aller Polynome von höchstens zweitem Grade mit (p+q)(x):=p(x)+q(x) und (kp)(x):=k(p(x)) einen Vektorraum bilden!
Begründen Sie, dass die Menge der Polynome von genau zweitem Grade mit den oben eingeführten Verknüpfungen kein Vektorraum ist! |
Hallo,
ich bin auf diese beiden aufgaben gestoßen- kann nur leider die axiome selbst schwer nachweisen, ich habe immer probleme, soetwas allgemein auszudrücken. kann mir bitte jemand helfen und den unterschied zwischen beiden mengen klarmachen, welche axiome gelten denn bei der zweiten menge nicht, sodass es kein vektorraum ist??
danke schonmal
|
|
|
|
Guten Morgen
Also was musst du zeigen. Damit eine Menge einen K-VR Vektorraum ist muss sie zuerst eine kommutative Gruppe bzgl der Addition sein.
Das ist nicht schwer zu beweisen.
Zuerst einmal die Abgeschlossenheit:
Wenn du zwei Polynome maximal mit Grad 2 Addierst, kommt dann wieder ein Polynom mit maximal Grad zwei raus?
Dann Die Assoziativität:
Ist Polynomaddition assoziativ
Dann dass additive Neutrale Element:
Was ist das neutrale Element bei der polynomaddition. Ist das VOm grad [mm] \le [/mm] 2?
Dann die Kommutativität:
Ist Polynomaddition kommutativ?
Dann das additive Inverse: Gibt es also zu jedem Polynom mit Grad [mm] \le [/mm] ein Polynom vom Grad [mm] \le [/mm] 2 sodass [mm] p_{1}(x)+p_{2}(x)=e [/mm] (e bezeichnet das neutrale Element bzgl der Addition)
Dann hast du schon mal bewiesen, dass die Polynome vom Grad [mm] \le [/mm] 2 eine kommutative Gruppe bilden.
Jetzt muss du noch die Distributivgesetzte
1. [mm] (k_{1}+k_{2})*p(x)=k_{1}*p(x)+k_{2}*p(x)
[/mm]
2. [mm] (p_{1}+p_{2})*k [/mm] = [mm] p_{1}*k+k*p_{2}(x) [/mm] mit [mm] k,k_{1},k_{2}\in \IK
[/mm]
Dann das 1-Element. Ist 1 ein Polynom vom Grad [mm] \le [/mm] 2 ? denn 1*p(x)=p(x).
Dann noch die Assoziativität: d.h. ist [mm] (k_{1}*k_{2})*p(x)=k_{1}*(k_{2}*p(x)) [/mm] wieder für [mm] k_{1}, k_{2} \in \IK
[/mm]
Dann hast du nachgewiesen dass die Menge aller Polynome vom Grad [mm] \le [/mm] 2 eine K-VR Vektorraum ist. Die Menge der Polynome vom Grad genau 2 verstößt gleich gegen Mehrere Der Axiome die ein KVR Vektorraum erfüllen muss.
Viel Text^^
trotzdem einen schönen Tach
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:57 Mi 30.01.2008 | Autor: | jura |
danke!
ja, die einzelnen axiome kenne ich schon und kann eigentlich auch nachvollziehen, dass diese für alle polynome von höchstens 2.grad gelten, aber wie sieht das nun genau bei der menge der polynome des 2.grades aus? was bedeutet das überhaupt genau, wie schreibt man es- p(x)=ax² ??? und welche axiome gelten dann nicht? kann mir bitte jemand den unterschied zwischen beiden mengen klarmachen?!
|
|
|
|
|
aber wie sieht das
> nun genau bei der menge der polynome des 2.grades aus? was
> bedeutet das überhaupt genau, wie schreibt man es- p(x)=ax²
> ???
Hallo,
Polynome genau 2. Grades sehen so aus: [mm] p=ax^2 [/mm] +bx + c mit [mm] a\not=0
[/mm]
> und welche axiome gelten dann nicht?
Denk mal darüber nach, ob Du immer ein Polynom zweiten Grades bekommst, wenn Du zwei Polynome zweiten Grades addeirst.
Und ist das Nullpolynom in der Menge der Polynome 2. Grades enthalten?
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:06 Mi 30.01.2008 | Autor: | jura |
>
> Polynome genau 2. Grades sehen so aus: [mm]p=ax^2[/mm] +bx + c mit
> [mm]a\not=0[/mm]
oh, genau das hätte ich ja nun für die menge aller polynome höchstens 2.grades geschrieben-- wie sehen die dann also aus?
> Denk mal darüber nach, ob Du immer ein Polynom zweiten
> Grades bekommst, wenn Du zwei Polynome zweiten Grades
> addeirst.
ein gegenbeispiel wäre: (-x²+x+1)+(x²+x+1)= 2x+2 also kein polynom 2.grades (achso, heißt polynom höchstens 2.grades dann etwa, dass auch soetwas herauskommen kann???die allgemeine gleichung würde dann also genauso aussehen wie für die menge oben, nur, dass a,b,c auch null sein dürfen?!)
>
> Und ist das Nullpolynom in der Menge der Polynome 2. Grades
> enthalten?
wahrscheinlich nicht, nur wie schreibe ich es auf? wie beweise ich es?
>
> Gruß v. Angela
Gruß v. Jule
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:35 Mi 30.01.2008 | Autor: | Marcel |
Hallo,
> >
> > Polynome genau 2. Grades sehen so aus: [mm]p=ax^2[/mm] +bx + c mit
> > [mm]a\not=0[/mm]
>
> oh, genau das hätte ich ja nun für die menge aller polynome
> höchstens 2.grades geschrieben-- wie sehen die dann also
> aus?
also:
Ein Polynom $p$ vom Grad $ [mm] \le [/mm] n$ hat die Gestalt:
[mm] $p(x)=\sum_{k=0}^n a_k x^k=a_0+a_1 [/mm] x + ... + [mm] a_n x^n$
[/mm]
mit Konstanten [mm] $a_m$, [/mm] $m=0,...,n$.
Ein Polynom vom Grad $=n$ ist ein Polynom vom Grad [mm] $\le [/mm] n$, das zudem [mm] $a_n \not= [/mm] 0$ erfüllt.
Also hier:
Ein Polynom vom Grad [mm] $\le [/mm] 2$ hat (wenn ich wie ihr bisher [mm] $a_0=c$, $a_1=b$ [/mm] und [mm] $a_2=a$ [/mm] schreibe) die Gestalt:
[mm] $p(x)=ax^2+bx+c$ [/mm] mit Konstanten $a,b,c$.
Ein Polynom vom Grad $=2$ hat ebenso die Gestalt
[mm] $p(x)=ax^2+bx+c$ [/mm] mit Konstanten $a,b,c$, nur muss zudem $a [mm] \not=0$ [/mm] gelten.
Beispiel:
Das Polynom [mm] $p_1$ [/mm] mit [mm] $p_1(x)=3x+7$ [/mm] ist ein Polynom vom Grad $=1$.
(Wegen $3 [mm] \not=0$ [/mm] und $1$ ist der größte Exponent, der bei der Variablen $x$ auftaucht. )
Man kann aber zudem [mm] $p_1$ [/mm] schreiben als
[mm] $p_1(x)=0*x^3+0*x^2+3x+7$, [/mm] es ist also auch ein Polynom vom Grad [mm] $\le [/mm] 3$
(Aber: [mm] $p_1$ [/mm] ist natürlich kein Polynom vom Grad $=3$, da vor dem [mm] $x^3$ [/mm] der Faktor $0$ steht!)
> > Denk mal darüber nach, ob Du immer ein Polynom zweiten
> > Grades bekommst, wenn Du zwei Polynome zweiten Grades
> > addeirst.
>
> ein gegenbeispiel wäre: (-x²+x+1)+(x²+x+1)= 2x+2 also kein
> polynom 2.grades
Ja, genaugenommen müsste man sagen:
Man betrachte die Polynome $P(x):=-x²+x+1$ und $Q(x):=x²+x+1$. Dann sind $P,Q$ Polynome vom Grad $=2$, aber $(P+Q)(x)=P(x)+Q(x)=2x+2$ ist offensichtlich ein Polynom vom Grad $=1 < 2$.
> (achso, heißt polynom höchstens 2.grades
> dann etwa, dass auch soetwas herauskommen kann???die
> allgemeine gleichung würde dann also genauso aussehen wie
> für die menge oben, nur, dass a,b,c auch null sein
> dürfen?!)
Ich habe das nun oben deutlich geschrieben, was ein Polynom vom Grad $=n$ von dem vom $Grad [mm] \le [/mm] n$ unterscheidet. Bei dem Polynom genau 2en Grades muss halt, in dieser Notation [mm] $p(x)=ax^2+bx+c$, [/mm] dann $a [mm] \not=0$ [/mm] sein, während das bei einem Polynom höchstens 2en Grades nicht verlangt wird. Ein Polynom vom Grad $=1$ ist daher insbesondere ein Polynom vom Grad höchstens 2.
> > Und ist das Nullpolynom in der Menge der Polynome 2. Grades
> > enthalten?
>
> wahrscheinlich nicht, nur wie schreibe ich es auf? wie
> beweise ich es?
Wäre das Nullpolynomm $N$ mit [mm] $N(x)\equiv [/mm] 0$ ein Polynom vom Grad $=2$, so gäbe es Konstanten $a,b,c$ mit $a [mm] \not=0$ [/mm] so, dass für alle $x$ gelten würde:
[mm] $ax^2+bx+c=N(x) \equiv [/mm] 0$
Wegen $|a| > 0$ würde dann aber [mm] $|N(x)|=|ax^2+bx+c| \to \infty$ [/mm] bei $x [mm] \to \pm \infty$ [/mm] folgen. Andererseits ist aber wegen $N(x) [mm] \equiv [/mm] 0$ klar, dass $N(x) [mm] \to [/mm] 0$ und damit auch $|N(x)| [mm] \to [/mm] 0$ bei $x [mm] \to \pm \infty$.
[/mm]
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:35 Do 31.01.2008 | Autor: | jura |
super, dankeschön!
|
|
|
|