matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenVektorraum von Abb.en
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Vektorraum von Abb.en
Vektorraum von Abb.en < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum von Abb.en: Hinweis
Status: (Frage) beantwortet Status 
Datum: 22:16 Di 13.12.2011
Autor: anabiene

Aufgabe
[mm] \IR^{(I)}:=\{f: I\to\IR \ | \ f \ \mbox{ hat an allen bis auf endlich vielen Stellen den Wert 0} \} [/mm] mit [mm] I\subset\IN [/mm]

kann mir jemand ein beispiel für ein paar elemente aus [mm] \IR^{(I)} [/mm] nennen (damit ich weiß wie die aussehen), wenn I z.B. [mm] =\{1;2;3 \} [/mm] oder so ist?

bitte

        
Bezug
Vektorraum von Abb.en: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Di 13.12.2011
Autor: Teufel

Hi!

Nehmen wir mal [mm] I=\IN. [/mm] Dann kannst du dir die Elemente aus [mm] \IR^\IN [/mm] vorstellen als alle unendlichen Folgen (eine reelle Folge ist ja gerade eine Abbildung $f: [mm] \IN \to \IR$) [/mm] nach [mm] \IR, [/mm] bei denen nur endlich viele Folgenglieder ungleich 0 sind.
z.B. [mm] f(1)=a_1=1, f(i)=a_i=0 [/mm] für i>1.

Falls [mm] $I=\{1, 2, 3\}$, [/mm] so [mm] \IR^I [/mm] die menge aller Abbildungen von I nach [mm] \IR, [/mm] denn egal wie sie aussieht, f hat immer nur an endlich vielen Stellen einen Wert ungleich 0, da f nur endlich viele Stellen besitzt.
z.B. f(1)=1, f(2)=23, f(3)=456

Spannend sind also eher die Fälle, in denen J unendlich ist, wie z.B. [mm] $J=\IN$ [/mm] oder $J=2 [mm] \IN$. [/mm]

Bezug
                
Bezug
Vektorraum von Abb.en: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Fr 16.12.2011
Autor: anabiene

hab grad gemerkt, dass ich mich noch gar nit bei dir für deine antwort bedankt hab, die ist super [flowers]

vielen dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]