matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum über Z/pZ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum über Z/pZ
Vektorraum über Z/pZ < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum über Z/pZ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Di 30.11.2010
Autor: void.

Aufgabe
Sei V ein Vektorraum über F = Z/pZ, p prim, der Dimension [mm] dim_F [/mm] V = n.
Wieviele Vektoren gibt es in V ?

Hallo,

ich bin zu der Aufgabe etwas überfragt.
Bisher hab ich eigtl nur,

dass #V := Anzahl der Vektoren..... #V [mm] \ge [/mm] n

Da Basen in jedem Fall in dem VR liegen.

Bei n=1 existiert dann nur eine Basis, aber p verschiedene Elemente aus Z/pZ mit denen der eine Vektor mult. werden kann, also #V = p ?

bei n=2 hab ich 2 vekt auf die ich alle äq klassen von Z/pZ dran mult. kann.

also wären dann in diesem Fall alle Permutationen = [mm] p^2 [/mm] = #V ?
(passt zumindest für p=3 und p=2)

das sieht dann ziemlich stark nach [mm] p^n [/mm] aus, wobei das sogar für dim = 0 passt mit einem Vektor.


bin ich zumindest am richtigen weg?

Gruß

        
Bezug
Vektorraum über Z/pZ: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Di 30.11.2010
Autor: leduart

Hallo
du hast Recht. ich würd das mit induktion zeigen. wenn es für n richtig ist, dann für einen n-dimunterraum des n+1 dimensionalen.
oder du nimmst dir ne Basis, [mm] b_i [/mm] und alle Vektoren kannst du mit [mm]\summe_{i=1}^{n} z_i*b_i[/mm] bestimmen. jedes [mm] z_i [/mm] kann p Werte annehmen. also auch insgesamt [mm] p^n [/mm] verschieden [mm] z_i. [/mm]
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]