matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum beweisen
Vektorraum beweisen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum beweisen: Tipp für Lösung der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 27.01.2016
Autor: Lola.Heide

Aufgabe
Sei L:={(x1,x2,x3,x4)∈ℝ4: x3+2*x4-x2=0}.

Zeigen Sie : (L,+,*) ist ein Vektorraum über ℝ, wobei + und * die übliche Vektoraddition bzw. die skalare Multiplikation für Elemente aus ℝ4 bezeichnen.

Sei L:={(x1,x2,x3,x4)∈ℝ4: x3+2*x4-x2=0}.

Zeigen Sie : (L,+,*) ist ein Vektorraum über ℝ, wobei + und * die übliche Vektoraddition bzw. die skalare Multiplikation für Elemente aus ℝ4 bezeichnen.


Ich weiß, dass ich hier die Gültigkeit der Axiome zeigen muss. Also zu zeigen ist:

V1) (L,+,*) ist ablesche Gruppe

V2) (a*b)*v=a*(b*v)

v3) 1*v=v

v4) (a+b)*v=(a*v)+(b*v)

V5) a*(v+w)= (a*v)+(a*w)

Nun weiß ich leider nicht wie ich die Vorschrift: x3+2*x4-x2=0 bei den Axiomen einbauen soll.

Ich würde mich über Hilfe freuen.

Danke im Vorraus

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.mathelounge.de/313275/zeigen-sie-das-l-ein-r-4-vektorraum-ist.]

        
Bezug
Vektorraum beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mi 27.01.2016
Autor: leduart

Hallo
wie sieht denn ein Vektor in L allgemein aus? [mm] x_1 [/mm] frei wählbar =r
dann eine Bedingung, die du als [mm] x_2=x_3+2x_4 [/mm] umschreiben kannst also auch [mm] x_3,x_4 [/mm] frei wählen als s,t und [mm] x_2 [/mm] daraus bestimmen, oder [mm] x_2,x_3 [/mm] freiwählen , [mm] x_4 [/mm] bestimmen
Dann sind die Nachweise einfach.
Gruß leduart

Bezug
        
Bezug
Vektorraum beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:15 Do 28.01.2016
Autor: fred97

[mm] \IR^4 [/mm] ist ein VR über [mm] \IR [/mm] und L ist eine Teilmenge von [mm] \IR^4. [/mm]

Wegen des Untervektorraumkriteriums ist nur zu zeigen:

1. 0 [mm] \in [/mm] L;

2. aus x,y [mm] \in [/mm] L und t [mm] \in \IR [/mm] folgt stets x+ty [mm] \in [/mm] L

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]