matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum Span Dimension Basi
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Vektorraum Span Dimension Basi
Vektorraum Span Dimension Basi < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Span Dimension Basi: Vektorraum
Status: (Frage) beantwortet Status 
Datum: 21:24 So 07.01.2007
Autor: Eisbude

Hallo,

bitte versteht meine Frage nicht falsch. Für mich ist es jedenfalls elementar diese Lücke zu schließen.

Könnte mir bitte jemand anhand von bildlichen Beispielen den Zusammenhang von Span, Dimension und Basis eines Vektorraumes erklären?
Vielleicht auch die knüpfenden Zusammenhänge...

Danke vielmals!
Mfg, Eisbude

        
Bezug
Vektorraum Span Dimension Basi: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 So 07.01.2007
Autor: DaMenge

Hi,

du solltest mal die Suche benutzen - zu den Themen wurde schon einiges geschrieben...

aber mal so das Wesentliche, was mir jetzt einfällt:

also sei M eine Menge von Vektoren , dann ist span(M) der Raum, der durch die Vektoren in M aufgespannt wird (die Menge aller möglichen Linearkombinationen der Vektoren in M)

wenn diese Vektoren in M linear unabhängig sind, bilden sie sogar eine Basis des von ihnen aufgespannten Raumes.
Eine Basis B eines Vektorraumes V ist eine maximal linear unabhängige Vektorenmenge oder (was äquivalent ist) ein minimales Erzeugendensystem , also V=span(B) mit der zusätzlichen Eigenschaft, dass B minimal bzgl der anzahl ist.
(also wenn man irgendeinen Vektor aus B entfernt wird nicht mehr ganz V aufgespannt)

zum Zusammenhang von Erzeugendensystem und Basis hab ich auch HIER schon etwas geschrieben, kann bestimmt nicht schaden zu lesen.
:-)

die Länge einer Basis ist die Dimension des Vektorraumes
(also die maximale Anzahl linear unabhängiger Vektoren in einer Vektorenmenge M)

Man kann zeigen, dass alle Basen eines VRs gleich lang sind, also die Dimension nicht von der Wahl der Basis abhängt.
(eine Menge M kann aber durchaus länger sein als B und trotzdem span(M)=V gelten - dann sind die Vektoren in M eben nur nicht mehr linear unabhängig bzw minimal aufspannend, also einige Vektoren könnte man noch aus M streichen, so dass dennoch ganz V aufgespannt würde)

hoffe, dass ich schonmal helfen konnte - aber frag ruhig nach
viele Grüße
DaMenge

Bezug
                
Bezug
Vektorraum Span Dimension Basi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 So 07.01.2007
Autor: Eisbude

Danke dir!
Ja klar hab ich noch ne Frage dazu ;)

Ich habe 3 Vektoren gegeben und zwei Vektoren sind davon linear unabhängig und der dritte linear abhängig ( Beispiel aus deinem anderen Beitrag in dem Forum).
Wie kann ich errechnen, dass der dritte Vektor von den anderen beiden abhängt?
Und ich versteh immernoch nicht, wie der Span die Menge aller Linearkombinationen angibt? Und was ist die Dimension des Spans dann?
Mfg

Bezug
                        
Bezug
Vektorraum Span Dimension Basi: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 So 07.01.2007
Autor: DaMenge

Hallo nochmal,


> Ich habe 3 Vektoren gegeben und zwei Vektoren sind davon
> linear unabhängig und der dritte linear abhängig ( Beispiel
> aus deinem anderen Beitrag in dem Forum).
>  Wie kann ich errechnen, dass der dritte Vektor von den
> anderen beiden abhängt?

du suchst also eine Basis des Erzeugendensystems oder willst du wirklich alle darstellungen eines vektors bzgl der anderen suchen?
zu ersterem schau mal HIER, oder wenn du dir mal überlegst, dass das Bild einer linearen Abbildung das Erzeugnis der Spalten der Darstellungmatrix ist, dann ist es dieselbe Aufge, eine Basis des Bildes zu bestimmen, schau mal HIER oder als praktisches Beispiel : HIER

>  Und ich versteh immernoch nicht, wie der Span die Menge
> aller Linearkombinationen angibt? Und was ist die Dimension
> des Spans dann?

das Erzeugnis ist einfach definiert als die Menge aller Linearkombination - es entsteht anschaulich also der Raum ,der durch die gegebenen Vektoren "aufgespannt" (in den LinKombies) wird.
Die Dimension des Erzeugnis ist die Länge einer Basis, also die Länge eines minimalen Erzeugnisses.
(also selbe Aufgabe wie oben : gegeben einige Vektoren, finde eine basis des Erzeugnisses)

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]