matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum Isomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum Isomorphismus
Vektorraum Isomorphismus < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 15.01.2007
Autor: wieZzZel

Aufgabe
Zeigen Sie, dass die Menge V = [mm] \IR_+ [/mm] (Menge aller positiven reelen Zahlen) mit den Operationen

x [mm] \oplus [/mm] y = xy und [mm] \lambda \odot [/mm] x = [mm] x^\lambda [/mm] wobei x,y [mm] \in [/mm] V und [mm] \lambda \in \IR [/mm]

ein Vektorraum ist.

Geben Sie einen Homomorphismus f : V [mm] \to \IR [/mm] an, wobei [mm] \IR [/mm] der Vektorraum der reelen Zahlen ist, mit den üblichen Operationen + und * als Vektoraddition und Skalarmultiplikation.
Ist dies auch ein Isomorphismus?

Hallo zusammen.

Bei dieser Aufgabe stehe ich vor einem Rätsel.

Wie weise ich am Besten die Vektorraumaxiome nach???

Könnt ihr bitte ein paar Tipps zu dieser Aufgabe und zu den zugehörigen Homomorphismus geben???

Dank euch und eine schöne Woche.

Tschüß sagt Röby

        
Bezug
Vektorraum Isomorphismus: weitere Fragen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Di 16.01.2007
Autor: wieZzZel

Hallo zusammen.

Meine Gedanken zu Vektorrauaxiome

beide Operationen sind abgeschlossen, das gíbt ja die Definition vor.

Assoziativgesetz bzgl [mm] \oplus [/mm] gilt aber wie ist das bei [mm] \odot [/mm] ???

wie zeige ich, das dieses gilt:    [mm] \lambda \* (\mu \odot [/mm] x) = [mm] (\lambda \* \mu [/mm] ) [mm] \odot [/mm] x   [mm] (\* [/mm] Multiplikation in [mm] \IR [/mm] )

ähnlich bei den Distributivgesetzten???

Dank euch für eure Hilfe.

Tschüß sagt Röby

Bezug
        
Bezug
Vektorraum Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 16.01.2007
Autor: SEcki


> Wie weise ich am Besten die Vektorraumaxiome nach???

[m]\oplus[/m] und [m]\odot[/m] sind eigentlich stragiht forward - da muss man blos die Potenzgesetze kennen, nd zB dass die Multiplikation assoziativ ist.

Homomoprhimsus: naja, was kennst du denn alles, was [m]f(x*y)=f(x)+f(y)[/m] erfüllt, so als Funktion allgemein? Na, eine Idee?

SEcki

Bezug
                
Bezug
Vektorraum Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:25 Di 16.01.2007
Autor: wieZzZel

Hallo Secki.

Also die Axiome hab ich, aber was könnte das für ein Homomorphismus sein???

Weis nicht, wie man mit einer Addition auf [mm] x\*y [/mm] kommen soll, auch mit einer Multiplikation auf eine Potenz???

Vielleicht noch ein kleiner Tip am Rande ;-) .

Machs gut und dank dir für deine Mühen

Tschüß sagt Röby

Bezug
                        
Bezug
Vektorraum Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Di 16.01.2007
Autor: SEcki


> Vielleicht noch ein kleiner Tip am Rande ;-) .

naja, eigentlich solltest du da ersmtl bissl selber brüten ... aber ich bin mal net so: ln.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]