matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum Formulierung?!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum Formulierung?!
Vektorraum Formulierung?! < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Formulierung?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Mi 09.04.2008
Autor: MALPI

Aufgabe
Aufgabe 2: Es sei M := {a, b, c, d, e} eine Menge mit 5 Elementen und V sei
die Menge aller Abbildungen von M nach Z7.
a) Wie viele Elemente besitzt die Menge V ?
b) Beschreiben Sie, wie man V auf eine möglichst natürliche Art als Vektorraum über Z7 darstellen kann.
c) Welche Dimension hat der Vektorraum V ?
d) Formulieren Sie eine Verallgemeinerung der Aussagen, die Sie in a) - c)
gemacht haben.

Guten Abend,

da bin ich mal wieder. Also a habe ich gelöst und zwar hat die Menge V [mm] (7^5)-1 [/mm] Elemente aber bei dem Rest habe ich absolut keine ahnung :(

Bitte helft mir weiter....

MfG

        
Bezug
Vektorraum Formulierung?!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 09.04.2008
Autor: Zneques

Hallo,

> V hat [mm] (7^5)-1 [/mm] Elemente

Wieso -1 ?

b)
Schreibe mal zwei mögliche Abbildungen auf.
Wie kannst du sie am übersichtlichsten darstellen ?

c)
Vektorraum über welchen Körper ?
Anzahl der Basisvektoren ist ?

d)
M hat dann n Elemente und wird in [mm] \IZ/p*\IZ [/mm] abgebildet.
(Warum [mm] p\in\IP [/mm] eine Primzahl ?)

Ciao.

Bezug
                
Bezug
Vektorraum Formulierung?!: Richtig gedacht ?
Status: (Frage) beantwortet Status 
Datum: 23:15 Fr 11.04.2008
Autor: MarvinTheMartian

Zu b)

ist es eine richtige Möglichkeit den Vektorraum, also die verschiedenen Abbildungen als Wertevektoren darzustellen ? Könnte ich den Vektorraum dann mathematisch als V= [mm] \lbrace (a,b,c,d,e)^\mathbb{T} \mid [/mm] a,b,c,d,e [mm] \in \mathbb{Z}_7 \rbrace [/mm] formulieren ? Der Vektor (1,3,5,6,2) würde dann bedeuten, dass a auf 1, b auf 3, ... abgebildet wird ?

Zu c)

Falls Meine Überlegungen zu b richtig sind, habe ich dann richtig gefolgert, dass die Dimension 5 ist, da der Wertevektor aus  5 lin. unabh. besteht ? Als homogenes LGS, ließe es sich ja nur lösen wenn alle Elemente der Definitionsmenge auf null abbilden ?

Es bereitet mir großes Kopfzerbrechen, dass die Vektoren nicht mehr als "Richtungen" betrachtet werden , sondern nur noch als Elemente eines Vektorraums interpretiert werden können, besonders in bezug auf die Dimension... Mit räumlich Vorstellen kommt man hier, wohl nicht mehr weit...

Bezug
                        
Bezug
Vektorraum Formulierung?!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Fr 11.04.2008
Autor: Zneques

Ja. Alles richtig.

> V= $ [mm] \lbrace (a,b,c,d,e)^\mathbb{T} \mid [/mm] $ a,b,c,d,e $ [mm] \in \mathbb{Z}_7 \rbrace [/mm] $

Nochmal a,b,c,d,e zu benutzen ist etwas unübersichtlich.
[mm] V=\left\{\vektor{f(a)\\f(b)\\f(c)\\f(d)\\f(e)} ; f\ eine\ Abb.\ M\to\IZ_7 \right\} =\left\{\vektor{x_1\\x_2\\x_3\\x_4\\x_5} ; x_i\in\IZ_7\right\} [/mm]

> Mit räumlich Vorstellen kommt man hier, wohl nicht mehr weit...

Man kann sich höchstens noch vereinfachte Modelle ähnlicher Räume vorstellen.
Z.B. [mm] V_2=\left\{\vektor{x_1\\x_2} ; x_i\in\IZ_7\right\} [/mm] würde zur Oberfläche eines Torus (Donuts) passen, da [mm] 6+1\equiv [/mm] 0 einmal ringsherrum wäre.
Die nächsten Dimensionen dürften beim Vorstellen schon ein wenig Kopfschmerzen verursachen.

Ciao.

Bezug
                                
Bezug
Vektorraum Formulierung?!: Vielen Dank !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:02 Sa 12.04.2008
Autor: MarvinTheMartian

Vielen Dank !

Bezug
                
Bezug
Vektorraum Formulierung?!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:39 Sa 12.04.2008
Autor: MALPI

Hi,

natürlich [mm] 7^5 [/mm] Elemente, keine ahnung wie ich auf [mm] 7^5-1 [/mm] gekommen bin.... Wenn man erstmal weis was gemeint ist mit der Aufgabenstellung ist es eigentlich total Simpel :D

Danke für die Hilfe...
MfG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]