matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum
Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Do 09.12.2010
Autor: sissenge

Aufgabe
Wiesen sie nach, dass die Mengen
[mm] c_{0}={(x_{n})_{n\inN} : x_{n} \in R, \limes_{n\rightarrow\infty}x_{n}=0} [/mm]
bezüglich der Addition und Multiplikation reelle Vektorräume sind.

ich habe jetzt mal nur eine Menge angegeben.

Und zwar muss ich ja jetzt nachweisen, dass in der Menge
Assoziativität, Distributivität, neutrales Element, Kommutativität, inverses Element existieren. Soweit richtig??

Allerdings weiß ich nicht so recht wie ich das jetzt in der Menge nachweisen kann??

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 05:06 Fr 10.12.2010
Autor: angela.h.b.


> Wiesen sie nach, dass die Mengen
>  [mm]c_{0}=\{(x_{n})_{n\in N} : x_{n} \in R, \limes_{n\rightarrow\infty}x_{n}=0\}[/mm]

Hallo,

ist Dir klar, welches die Elemente dieser Menge sind?
Es sind Folgen reeller Zahlen, welche gegen 0 konvergieren.

>  
> bezüglich der Addition und Multiplikation reelle
> Vektorräume sind.

Welche Addition und Multiplikation ist hier gemeint?
Du solltest die Def. mal aufschreiben.


> Und zwar muss ich ja jetzt nachweisen, dass in der Menge
>  Assoziativität, Distributivität, neutrales Element,
> Kommutativität, inverses Element existieren. Soweit
> richtig??

Soweit ja.
Aber für VR ist mehr zu zeigen: zweitens die Gesetze, die sich mit der Multiplikation befassen, und erstens noch, daß sowohl die Addition als auch die Multiplikation abgeschlossen sind, es sich also wieder Folgen aus [mm] S_0 [/mm] ergeben.

Aber: vielleicht habt Ihr in der Vorlesung schon gezeigt, daß die reellen Folgen zusammen mit den einschlägigen Verknüpfungen einen Vektorraum bilden. (?)
Wenn dies der Fall wäre, hättest Du viel Arbeit gespart, denn Du müßtest nur nachweisen, daß [mm] S_0 [/mm] ein Untervektorraum davon ist, also die drei Unterraumkriterien. Welche sind das?

>  
> Allerdings weiß ich nicht so recht wie ich das jetzt in
> der Menge nachweisen kann??  

Nun, für die Assoziativität müßtest Du vorrechnen, daß für [mm] (x_n)_{n\in \IN}, (y_n)_{n\in \IN}, (z_n)_{n\in \IN} (y_n)_{n\in \IN}, (z_n)_{n\in \IN} [/mm] gilt:

[mm] [(x_n)_{n\in\IN} [/mm] +  [mm] (y_n)_{n\in \IN}] [/mm] + [mm] (z_n)_{n\in \IN}=(x_n)_{n\in \IN} [/mm] + [mm] [(y_n)_{n\in \IN} [/mm] + [mm] (z_n)_{n\in \IN}]. [/mm]

Das wird gelingen, wenn Du Dir die Def. erstmal klargemacht hast.
Vergiß nicht, zu jedem Schritt eine Begründung anzugeben.

Noch zum neutralen Element: welche Folge kannst Du zu einer beliebigen Folge addieren, ohne daß sich die Folge verändert?
Nun mußt Du prüfen, ob diese auch wirklich in [mm] S_0 [/mm] liegt.
Was mußt Du dafür nachschauen?

Soweit erstmal. Jetzt bist Du dran.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]