Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien a, b und c paarweise verschiedene reele Zahlen. Zeigen Sie, dass
die Vektoren [mm] v_1 [/mm] = [mm] \vektor{1 \\ a \\ a^2}, v_2 [/mm] = [mm] \vektor{1 \\ b \\ b^2} [/mm] und [mm] v_3 [/mm] = [mm] \vektor{1 \\ c \\ c^2} [/mm] eine Basis von [mm] \IR^3 [/mm] darstellen (natürlich ohne Verwendung von Determinanten!). |
Also ich weiß schon mal, dass da ein LGS aufgestellt werden muss, was zeigen soll, dass nur im Trivialfall, d.h. [mm] k_1 [/mm] = [mm] k_2 [/mm] = [mm] k_3 [/mm] = 0 das LGS aufgeht!
Damit wäre ja auch die lineare Unabhängigkeit gezeigt, was man ja auch schon mit bloßen Auge sieht.
Bin ich dann schon mit der Aufgabe fertig? Wie zeige ich, dass die Vektoren eine Basis von [mm] \IR^3 [/mm] darstellen?
|
|
|
|
> Seien a, b und c paarweise verschiedene reele Zahlen.
> Zeigen Sie, dass
> die Vektoren [mm]v_1[/mm] = [mm]\vektor{1 \\ a \\ a^2}, v_2[/mm] = [mm]\vektor{1 \\ b \\ b^2}[/mm]
> und [mm]v_3[/mm] = [mm]\vektor{1 \\ c \\ c^2}[/mm] eine Basis von [mm]\IR^3[/mm]
> darstellen (natürlich ohne Verwendung von Determinanten!).
> Also ich weiß schon mal, dass da ein LGS aufgestellt
> werden muss, was zeigen soll, dass nur im Trivialfall, d.h.
> [mm]k_1[/mm] = [mm]k_2[/mm] = [mm]k_3[/mm] = 0 das LGS aufgeht!
> Damit wäre ja auch die lineare Unabhängigkeit gezeigt, was
> man ja auch schon mit bloßen Auge sieht.
Hallo,
ich sehe das nicht mit bloßem Auge.
Aber ausrechnen kann man's, das stimmt.
> Bin ich dann schon mit der Aufgabe fertig? Wie zeige ich,
> dass die Vektoren eine Basis von [mm]\IR^3[/mm] darstellen?
Wenn bei Euch der Dimensionsbegriff bereits eingeführt wurde, weißt Du, daß der [mm] \IR^3 [/mm] die Dimension 3 hat, und es war sicher dran, daß in dem Fall jede linear unabhängige Menge von 3 Vektoren eine Basis ist.
Wenn der Dimensionsbegriff nicht dran war, mußt Du zeigen, daß Du mit den drei Vektoren per Linearkombination jedes beliebige [mm] \vektor{x \\ y\\ z} [/mm] erzeugen kannst.
Du mußt also Koeffizienten finden, mit denen Du als Ergebnis der Linearkombination den Vektor [mm] \vektor{x \\ y\\ z} [/mm] erhältst.
Gruß v. Angela
|
|
|
|
|
Aufgabe | Hallo, also ich habe jetzt das LGS aufgelöst; man sieht, dass nur der Trivialfall [mm] (x_1 [/mm] = [mm] x_2 [/mm] = [mm] x_3 [/mm] = 0) eine Lösung bietet. Somit habe ich auch gezeigt, dass die Vektoren [mm] v_1, v_2 [/mm] und [mm] v_3 [/mm] voneinander linear unabhängig sind. Kann ich nun sagen, dass diese 3 Vektoren die Basis, also das kleinste erzeugende System im [mm] \IR^3 [/mm] darstellen? |
D.Q.
|
|
|
|
|
Hallo DoktorQuagga,
> Hallo, also ich habe jetzt das LGS aufgelöst; man sieht,
> dass nur der Trivialfall [mm](x_1[/mm] = [mm]x_2[/mm] = [mm]x_3[/mm] = 0) eine Lösung
> bietet. Somit habe ich auch gezeigt, dass die Vektoren [mm]v_1, v_2[/mm]
> und [mm]v_3[/mm] voneinander linear unabhängig sind. Kann ich nun
> sagen, dass diese 3 Vektoren die Basis, also das kleinste
> erzeugende System im [mm]\IR^3[/mm] darstellen?
Ja. .
> D.Q.
Gruß
MathePower
|
|
|
|