matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Basisabzählbar
Status: (Frage) beantwortet Status 
Datum: 22:25 Do 13.01.2005
Autor: mimi94

Hallo Ihr!
Ich habe totale Probleme bei dieser Aufgabe:

Beweise oder widerlege: Der  [mm] \IQ-Vektorraum \IR [/mm] besitzt eine abzählbare Basis.

Erstmal besteht bei mir die Frage des Verstehens. Da zw. Q-Vektorraum und R keine Beschreibung für R dazw. ist, weiß ich auch nicht was dies jetzt genau bedeutet.
Ist jetzt dieser Q-raum deer Unterraum von R. Ich bin mir da überhaupt nicht sicher.
Dann gibt es noch ein Problem mit der Lösung. Ich weiß nämlich nicht genau was überhaupt eine Basis ist.
Vielleicht könnte mir jemand dabei helfen, weil so bekomme ich den Beweis aufjedenfall nicht hin.
Ich bedanke mich schon mal :).  

Ich habe diese Frage auf keinem anderem Forum gestellt.

        
Bezug
Vektorraum: Basis...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:46 Do 13.01.2005
Autor: Bastiane

Hallo mimi94!
Nur ganz kurz: Was eine Basis ist, solltest du schon wissen. Das ist eigentlich auch gar nicht so schwierig. Da ich das aber in der letzten Zeit schon mal erklärt habe, reicht es glaube ich erstmal, wenn du dir das durchliest und danach kannst du ja weiter fragen. Ich habe jetzt leider auch nicht die Zeit, zu suchen, wo ich das beschrieben habe. Aber vor wenigen Tagen kam eine Frage in der Schul-Linearen Algebra, da hat glaube ich auch jemand was zur Basis erklärt. Und vor etwas längerer Zeit habe ich selbst etwas im Uni-Lineare Algebra-Forum geschrieben. Vielleicht gibt's du oben rechts auf dieser Seite hier einfach mal "Basis" ein und klickst dann auf Suchen, dann müsstest du eigentlich einiges finden und wahrscheinlich auch etwas, das dich weiterhilft.
Wie gesagt, wenn du davon irgenetwas nicht verstehst, kannst du gerne weiterfragen. ;-)

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Vektorraum: Nur kurz...
Status: (Antwort) fertig Status 
Datum: 01:10 Fr 14.01.2005
Autor: Marcel

Hallo mimi94,

> Hallo Ihr!
>  Ich habe totale Probleme bei dieser Aufgabe:
>  
> Beweise oder widerlege: Der  [mm]\IQ-Vektorraum \IR[/mm] besitzt
> eine abzählbare Basis.
>  
> Erstmal besteht bei mir die Frage des Verstehens. Da zw.
> Q-Vektorraum und R keine Beschreibung für R dazw. ist, weiß
> ich auch nicht was dies jetzt genau bedeutet.

Du fragst dich, was das bedeutet, dass dort [mm] $\IR$ [/mm] als [m]\IQ[/m]-Vektorraum aufgefasst wird?
Das heißt dann, dass bei der Multiplikation eines Skalares mit einem Vektor dann der Skalar aus [mm] $\IQ$ [/mm] genommen wird.
Nun beachte:
Da [m]\IR[/m] ein Körper ist, erhält man ja sofort, dass [mm] $\IR$ [/mm] ein [mm] $\IR$- [/mm] Vektorraum ist (das Wesentliche: [mm] $\forall \alpha \in \underbrace{\IR}_{Koerper}$,[/mm]  [m]\forall x \in \underbrace{\IR}_{Vektorraum} \Rightarrow \alpha*x \in \underbrace{\IR}_{Vektorraum}[/m]).
Aber warum kann man nun [mm] $\IR$ [/mm] auch als [mm] $\IQ$-Vektorraum [/mm] auffassen?

(Du kannst jetzt auch die Vektorraumaxiome nachrechnen, falls du das willst. Das meiste ist aber eh klar! :-))

Das Wesentliche, um dies zu beantworten, ist:
Es gilt:
[m]\forall \alpha \in \underbrace{\IQ}_{Koerper}[/m] und [m]\forall x \in \underbrace{\IR}_{Vektorraum} \Rightarrow \alpha*x \in \underbrace{\IR}_{Vektorraum}[/m]

(Wobei hier (wo [mm] $\IR$ [/mm] als [mm] $\IQ$-VR [/mm] gemeint ist) die "skalare Multiplikation" [mm] $*\;:\IQ \times \IR \to \IR$ [/mm] als "gewöhnliche Multiplikation zwischen Elementen von [mm] $\IR$" [/mm] aufgefasst werden soll (beachte dabei, dass [mm] $\IQ \subset \IR$ [/mm] gilt und deswegen diese "Auffassung" möglich ist).)

PS: Anstatt z.B.:
[mm] "$\IR$ [/mm] sei ein [mm] $\IQ$-Vektorraum..." [/mm]
sagt man auch:
"Sei [mm] $\IR$ [/mm] ein Vektorraum über (dem Körper) [mm] $\IQ$..." [/mm]

Viele Grüße,
Marcel

Bezug
        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Fr 14.01.2005
Autor: Julius

Hallo!

Nehmen wir mal an [mm] $\IR$ [/mm] hätte eine abzählbare Basis [mm] ${\cal B}$ [/mm] über [mm] $\IQ$. [/mm]

Jetzt zeigen wir mit dem Cantorschen Diagonalverfahren, dass dann [mm] $\IR$ [/mm] abzählbar sein müsste, was einen Widerspruch darstellt.

Schreibe in die erste Zeile alle [mm] $\lambda [/mm] v$ mit [mm] $\lambda \in \IQ$, [/mm] $v [mm] \in {\cal B}$. [/mm] Dies sind abzählbar viele Elemente.

Schreibe in die zweite Zeile alle [mm] $\lambda_1 v_1 [/mm] + [mm] \lambda_2 v_2$ [/mm] mit [mm] $\lambda_1, \lambda_2 \in \IQ$, $v_1,v_2 \in {\cal B}$. [/mm] Dies sind abzählbar viele Elemente.

Schreibe in die dritte Zeile alle [mm] $\lambda_1 v_1 [/mm] + [mm] \lambda_2 v_2 [/mm] + [mm] \lambda_3 v_3$ [/mm] mit [mm] $\lambda_1, \lambda_2, \lambda_3 \in \IQ$, $v_1,v_2,v_3 \in {\cal B}$. [/mm] Dies sind abzählbar viele Elemente.

Usw.

Dadruch erreicht man nach Annahme alle Elemente aus [mm] $\IR$. [/mm]

Mit dem Diagonalverfahren zeigt man, dass dann [mm] $\IR$ [/mm] abzählbar sein müsste (schau dir dazu den Nachweis noch einmal an, dass [mm] $\IQ$ [/mm] abzählbar ist oder aber den, dass die abzählbare Vereinigung abzählbarer Mengen wieder abzählbar ist, dort wird genau dieses Diagonalverfahren angewandt).

Da dies einen Widerspruch zur Überabzählbarkeit von [mm] $\IR$ [/mm] darstellt, kann [mm] $\IR$ [/mm] als [mm] $\IQ$-Vektorraum [/mm] keine abzählbare Basis besitzen.

Liebe Grüße
Julius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]