matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 25.11.2004
Autor: Sandra21

Hallo

Kann mir jemand bei dieser Aufgabe helfen. Leider brauche ich das schon für morgen. Ich weiß zwar das ich sehr spät dran bin aber ich versuchs trotzdem mal. Vielleicht findet sich ja jemand der mir so kurzfristing helfen kann


Also die Aufgabe lautet:
Es sei V ein Vektorraum über K, u(1),...u(n)  [mm] \in [/mm] V und a(2),...a(n)  [mm] \in [/mm] K.
Zeigen Sie: <u1,..un> = <u(1),u(2) - a(2)*u(1),...,u(n)-a(n)*u(1)>.

Danke euch

Sandra

Ich habe diese Frage in keinen anderem Forum gestellt.



        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Fr 26.11.2004
Autor: Julius

Hallo Sandra!

Es sei

$x [mm] \in \langle u_1,u_2,\ldots,u_n \rangle$. [/mm]

Dann gibt es [mm] $\lambda_1,\ldots, \lambda_n \in [/mm] K$ mit

$x= [mm] \lambda_1 [/mm] u _1 + [mm] \lambda_2 u_2 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n u_n$. [/mm]

Es folgt:

$x= [mm] \lambda_1 [/mm] u _1 + [mm] \lambda_2 u_2 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n u_n$ [/mm]

$= [mm] (\lambda_1 u_1 [/mm] + [mm] \lambda_2 a_2 [/mm] + [mm] \lambda_3a_3 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n a_n) u_1 [/mm] + [mm] \lambda_2(u_2 [/mm] - [mm] a_2 u_1) [/mm] + [mm] \lambda_3(u_3 [/mm] - [mm] a_3u_1) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n(u_n [/mm] - [mm] a_n u_1)$ [/mm]

[mm] $\in \langle u_1,u_2-a_2u_1,u_3-a_3u_1,\ldots,u_n-a_n u_1 \rangle$. [/mm]

Versuche nun mal die andere Richtung (ganz ähnlich! :-)) selber zu beweisen.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]