matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 17.05.2007
Autor: Knoepfchen

Aufgabe
Es sei V ein K- Vektorraum und S=(v1, v2,…,vn) ein System von Vektoren von V. Zeigen Sie:
Ist S ein minimales Erzeugendensystem von V, so ist S auch ein maximales System linear unabhängiger Vektoren von V. Benutzen Sie für den Beweis NICHT den Begriff der Basis!

Hallo,
kann mir jemand bei dieser Aufgabe helfen. Mein Problem ist es, nicht den Begriff der Basis zu benutzen.
Es wäre wirklich nett wenn mir jemand helfen könnte... Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Do 17.05.2007
Autor: Karsten0611

Hallo Knöpfchen!

> Es sei V ein K- Vektorraum und S=(v1, v2,…,vn) ein System
> von Vektoren von V. Zeigen Sie:
>  Ist S ein minimales Erzeugendensystem von V, so ist S auch
> ein maximales System linear unabhängiger Vektoren von V.
> Benutzen Sie für den Beweis NICHT den Begriff der Basis!

> Mein Problem
> ist es, nicht den Begriff der Basis zu benutzen.

Naja, S ist tatsächlich eine Basis von V, aber das weißt Du ja auch. Gehen wir es mal an: Da S ein Erzeugendensystem von V ist, kann jeder Vektor v [mm] \in [/mm] V als Linearkombination

[mm]v = \summe_{i=1}^{n}\lambda_i v_i[/mm]

mit geeigneten [mm]\lambda_i \in K[/mm], i [mm] \in [/mm] {1, ..., n} dargestellt werden.  Angenommen, S  wäre kein maximales System linear unabhängiger Vektoren von V, dann gibt es einen Vektor [mm]0 \not= v_{n+1} \in V[/mm], den wir zu S hinzunehmen können und [mm](v_1, ..., v_{n+1})[/mm] bliebe linear unabhängig. Es ist

[mm]v_{n+1} = \summe_{i=1}^{n}\lambda_i v_i[/mm]

mit geeigneten [mm]\lambda_i \in K[/mm], die nicht sämtlich 0 sind, denn [mm](v_1, ..., v_n)[/mm] ist ja ein Erzeugendensystem von V. Damit wäre

[mm]\summe_{i=1}^{n}\lambda_i v_i - v_{n+1} = 0 \gdw \summe_{i=1}^{n+1}\lambda_i v_i = 0[/mm]

und wir hätten eine Linearkombination des Nullvektors aus den [mm] v_i [/mm] gefunden, deren Koeffizienten nicht sämtlich 0 sind. Also wäre [mm](v_1, ..., v_{n+1})[/mm] linear abhängig. Widerspruch!

LG
Karsten



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]