matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:08 Fr 12.11.2004
Autor: Nadja

Hallo

Kann mir jemand helfen.

Und zwar muss ich zeigen: {(1,1,1),(1,2,3),(1,4,9)} ist eine Basis von [mm] R^3. [/mm]


wie zeige ich das?

Nadja

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Fr 12.11.2004
Autor: Bastiane

Hall!

> Und zwar muss ich zeigen: {(1,1,1),(1,2,3),(1,4,9)} ist
> eine Basis von [mm]R^3. [/mm]

Also, wenn die Menge dieser drei Vektoren eine Basis ist, dann muss sie ein linear unabhängiges Erzeugendensystem sein. Du musst also zeigen, dass sie linear unabhängig sind, und dass sie jeden Vektor des [mm] \IR^3 [/mm] darstellen.

Für die lineare Unabhängigkeit (wenn du sie richtig zeigen möchtest, eigentlich sieht man es ja direkt ;-)) stellst du ein LGS aus:
[mm] x_1+x_2+x_3=0 [/mm]
[mm] x_1+2x_2+3x_3=0 [/mm]
[mm] x_1+3x_2+9x_3=0 [/mm]
Wenn du das jetzt auflöst, und da kommt nur die triviale Lösung, also [mm] x_1=x_2=x_3=0, [/mm] raus, dann hast du gezeigt, dass die drei Vektoren linear unabhängig sind (ich hab's gemacht, es stimmt natürlich)!

Bei dem Erzeugendesystem machst du es so:
Es heißt ja im Prinzip:
[mm] \vektor{1 \\ 1 \\ 1}*a_1+ \vektor{1 \\ 2 \\ 3 }*a_2+ \vektor{1 \\ 4 \\ 9 }*a_3=x [/mm]
für alle [mm] x\in\IR^3 [/mm]
jetzt musst du zeigen, dass dieses Gleichungssystem lösbar ist, dass es also [mm] a_1 [/mm] bis [mm] a_3 [/mm] gibt.

Hilft dir das weiter?

Viele Grüße
Bastiane
[cap]



Bezug
        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Sa 13.11.2004
Autor: SERIF

Hallo Es ist fast alles richtig. Ich glaube Bastiane hat eine Tipfehler. Oder war das nur ein beispiel. Ich korigiere es, und wünsche vile spaß

[mm] x_{1} [/mm] +  [mm] x_{2} [/mm] +  [mm] x_{2} [/mm] = 0
[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 4x_{3} [/mm] = 0
[mm] x_{1} [/mm] + 3 [mm] x_{2} [/mm] + [mm] 9x_{3} [/mm] = 0

Bezug
                
Bezug
Vektorraum: Tippfehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Sa 13.11.2004
Autor: Gnometech

Grüße!

Ich habe mir die Freiheit genommen, den kleinen Tippfehler zu korrigieren - ich hoffe, Du nimmst es mir nicht übel, Bastiane. :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]