matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Vektorraum
Vektorraum < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 So 12.11.2006
Autor: Thomas2011

Aufgabe
Sei V ein Vektorraum über K und bezeichnen [mm] 2^{V} [/mm] die Potenzmenge von V. Untersuchen sie, ob [mm] (2^{V}, [/mm] K) versehen mit den folgenden Operationen einen Vektorraum bildet.
[mm] \lambda\*X [/mm] := { [mm] \lambda\*x| x\in [/mm] X } für alle [mm] \lambda\in [/mm] K, X [mm] \subset [/mm] V und
X+Y := {  [mm] x+y|x\inX \wedge y\in [/mm] Y } für alle X, Y [mm] \subset [/mm] V

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Ich weiß zwar dass ich in diesem Fall eigentlich nur die Vektorraumaxiome prüfen muss, trotzdem tu ich mir mit der ganzen Sache sehr schwer? Kann mir da vielleicht jemand konkret weiterhelfen?
Vielen Dank schonmal im Vorraus
Thomas

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Di 14.11.2006
Autor: angela.h.b.


> Sei V ein Vektorraum über K und bezeichnen [mm]2^{V}[/mm] die
> Potenzmenge von V. Untersuchen sie, ob [mm](2^{V},[/mm] K) versehen
> mit den folgenden Operationen einen Vektorraum bildet.
>  [mm]\lambda\*X[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= { [mm]\lambda\*x| x\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

X } für alle [mm]\lambda\in[/mm]

> K, X [mm]\subset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

V und

>  X+Y := {  [mm]x+y|x\inX \wedge y\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Y } für alle X, Y [mm]\subset[/mm]

> V
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. Ich weiß zwar dass ich in diesem
> Fall eigentlich nur die Vektorraumaxiome prüfen muss,

Hallo,

[willkommenmr].

Welches sind denn die Axiome, die Du prüfen möchtest.
Am besten, Du schreibst sie zunächst auf, um sie dann auf den konkreten Fall zu übertragen.

Ich würde zunächst prüfen, ob es sich bei der hier erklärten Addition und der Multiplikation mit Skalaren um innere Verknüpfungen handelt. D.h. ob für alle [mm] X,Y,\lambda [/mm]       X+Y und [mm] \lambda*X [/mm] wirklich wieder in [mm] 2^V [/mm] liegen, d.h. Teilmengen von V sind.

Und danach geht's Stück für Stück weiter. Vielleicht kannst Du erklären, wo Deine Schwierigkeiten liegen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]