matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorräume und Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume und Mengen
Vektorräume und Mengen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume und Mengen: Allgemeine Tipps/Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:42 So 07.11.2010
Autor: TrockenNass

Aufgabe 1
Es seien K ein Körper und V [mm] :=Abb({\IN, K}) [/mm] die Menge der Abbildungen [mm] {f:\IN \to K}. [/mm] Wir definieren eine Addition und Skalarmultiplikation auf V durch [mm] ({f,g\in V},{\lambda \in K}): [/mm]
[mm] (f+{\nu g})(n) [/mm] := f(n) +_{k} g(n) [mm] {\forall n\in \IN} [/mm]
[mm] (\lambda [/mm] * [mm] \nu [/mm] f)(n) := [mm] \lambda [/mm] *_{K} f(n) [mm] {\forall n \in \IN} [/mm]
Weiter sei [mm] 0_{V} [/mm] die konstante Nullfunktion (d.h. [mm] 0_{V}(n) [/mm] := [mm] 0_{K} [/mm] für alle [mm] n\in \IN). [/mm]
(a) Zeigen Sie, dass (V, [mm] 0_{V}, [/mm] +_{V}, *_{V}) ein K-Vektorraum ist.
(b) Für [mm] n\in \IN [/mm] sei [mm] W_{n}:={f\in V|f[m)=0 \forall m>n}. [/mm] Zeigen Sie, dass jedes [mm] W_n [/mm] ein Untervektorraum von V ist.

Aufgabe 2
(a) Es seien M eine Menge, I eine Menge und für jedes [mm] {i\in I} [/mm] eine Teilmenge [mm] {M_{i}\subseteq M} [/mm] gegeben, sodass [mm] M=\bigcup^{*} _{i\in I} M_{i}. [/mm] Für [mm] {a,b\in M} [/mm] definieren wir
[mm] a\sim [/mm] b [mm] :\gdw \exists {i\in I} [/mm] mit {a,b} [mm] \subseteq M_{i}. [/mm]
Zeigen sie, dass [mm] \sim [/mm] eine Äquivalenzrelation auf M ist. Zeigen Sie des weiteren, dass die Äquivalenzklassen genau die nichtleeren Mengen [mm] M_{i} [/mm] sind.

(b) Sei M = [mm] \IR^{2} [/mm] und für [mm] r\in \IR [/mm] sei [mm] M_{r} [/mm] := [mm] {{(x,y)\in M}| x_{2} + y_{2}=r }. [/mm] Beschreiben sie die Teilmengen [mm] M_{r} [/mm] geometrisch. Zeigen Sie des weiteren, dass [mm] M=\bigcup^{\cdot}_{r\in \IR} M_{r} [/mm] gilt. Geben Sie eine geometrische Beschreibung der durch diese Zerlegung von M definierten Äquivalenzrelation (vgl. Teil (a)), ohne die Mengen [mm] M_{r} [/mm] zu verwenden.

Zunächst einmal möchte ich mich für die lausige Darstellung der Aufgaben bzw. der Formeln entschuldigen, aber aus unerklärlichen Gründen klappt des heut irgendwie nicht so ganz.
Aufgabe 1
(a) Genügt es, alle Axiome nachrechnen?
(b) Wie fang ich hier an - ich bin bei dieser Teilaufgabe irgendwie planlos?

Aufgabe 2
(a) Genügt es Äquivalenz zu beweisen, wenn ich die drei Äquivalenzrelation (transitiv, reflexiv und symmetrisch) anwende und zeige das sie gelten.
(b) Mit der hab ich mich noch überhaupt nicht befasst, Tipps nehm ich trotzdem gern entgegen (könnt ihr euch aber auch erstmal sparen).

Gruß
TrockenNass


        
Bezug
Vektorräume und Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mo 08.11.2010
Autor: Lippel

Hallo.

>  Zunächst einmal möchte ich mich für die lausige
> Darstellung der Aufgaben bzw. der Formeln entschuldigen,
> aber aus unerklärlichen Gründen klappt des heut irgendwie
> nicht so ganz. Aufgabe 1
>  (a) Genügt es, alle Axiome nachrechnen?

Ja, klar.

>  (b) Wie fang ich hier an - ich bin bei dieser Teilaufgabe
> irgendwie planlos?

Schau dir nochmal an, was Untervektorraum bedeutet. Um zu beweisen, dass [mm] $W_{n}$ [/mm] Untervektorraum des [mm] $Abb(\IN,K)$ [/mm] ist, müssen drei Dinge gezeigt werden:
1. [mm] $0_{V} \in W_{n}$ [/mm]
2. $f,g [mm] \in W_{n} \Rightarrow [/mm] f+g [mm] \in W_{n}$ [/mm]
3. [mm] $\alpha \in [/mm] K, f [mm] \in W_{n} \Rightarrow {\alpha}*f \in W_{n}$ [/mm]


>  Aufgabe 2
>  (a) Genügt es Äquivalenz zu beweisen, wenn ich die drei
> Äquivalenzrelation (transitiv, reflexiv und symmetrisch)
> anwende und zeige das sie gelten.

Ich verstehe nicht ganz, was du meinst.
Zunächst musst du zeigen, dass die gegebene Relation transitiv, reflexiv und symmetrisch ist. Wenn eine Realtion diese drei Bedingungen erfüllt, spricht man von einer Äquivalenzrelation.
Wenn du das gezeigt hast kannst du für ein $a [mm] \in [/mm] M$ die Äquivalenzklasse [mm] $[a]:=\{b \in M | b \sim a\}$ [/mm] betrachten.

Zu zeigen ist nun, dass für ein $a [mm] \in M_{i}$ [/mm] (dieses $a$ ex. genau für die nichtleeren [mm] $M_i$, [/mm] für die die Aussage gezeigt werden soll) gilt:
[mm] $M_{i} [/mm] = [a]$, d.h. du musst beide Inklusionen zeigen:
1. [mm] $M_{i} \subseteq [/mm] [a]$
2. [mm] $M_{i} \supseteq [/mm] [a]$

>  (b) Mit der hab ich mich noch überhaupt nicht befasst,
> Tipps nehm ich trotzdem gern entgegen (könnt ihr euch aber
> auch erstmal sparen).
>   Gruß
>  TrockenNass
>  

Grüße, Lippel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]