matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorräume mit einem Isomorph
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume mit einem Isomorph
Vektorräume mit einem Isomorph < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume mit einem Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 So 01.05.2011
Autor: mathetuV

aufgabenstellung: finde alle vektorräume V über K, so dass dort genau ein Isomorpjismus von V in sich selbst exietiert.


Kann mir da bitte einer dringend helfen, wie ich das lösen kann?

MfG

        
Bezug
Vektorräume mit einem Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 So 01.05.2011
Autor: felixf

Moin!

> aufgabenstellung: finde alle vektorräume V über K, so
> dass dort genau ein Isomorpjismus von V in sich selbst
> exietiert.

Zuerst: die Identitaet ist immer ein Isomorphismus $V [mm] \to [/mm] V$.

>  
>
> Kann mir da bitte einer dringend helfen, wie ich das lösen
> kann?

Sagen wir mal du hast eine $K$-Basis [mm] $(v_i)_{i\in I}$ [/mm] von $V$.

Wenn jetzt $|I| > 1$ gilt, dann hat die Basis mindestens zwei Elemente. Kannst du damit einen Isomorphismus $V [mm] \to [/mm] V$ basteln, der nicht die Identitaet ist?

Jetzt schau dir den Fall $|I| = 1$ an. Hier kannst du alle Isomorphismen einfach beschreiben, und bekommst damit auch heraus wieviele es gibt. Wann gibt es nur genau einen?

Und schliesslich der Fall $|I| = 0$. Wieviele Isomorphismen gibt es hier?

LG Felix


Bezug
                
Bezug
Vektorräume mit einem Isomorph: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:18 So 01.05.2011
Autor: mathetuV

aufgabenstellung: finde alle vektorräume V über K, so dass dort genau ein Isomorpjismus von V in sich selbst exietiert.


Kann mir da bitte einer dringend helfen, wie ich das lösen kann?

MfG


sorry wenn ich jetz falsch antworte:vielen dank für deinen denkanstoß.

|I|=0 gibts es dich eeinen isomorphismus, der die null wieder auf die null abbildet,
|I|>1 gibt es doch so viele automorphismen wie vektoren, oder vereth ich das nicht?

Bezug
                        
Bezug
Vektorräume mit einem Isomorph: Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 Mo 02.05.2011
Autor: fred97

Sei B eine Basis von V mit mindestens 2 Elementen [mm] b_1,b_2: [/mm] Setze

             [mm] g(b_1)=b_2 [/mm] , [mm] g(b_2)=b_1 [/mm] und g(b)=b  für b [mm] \in [/mm] $B [mm] \setminus \{b_1,b_2 \}$ [/mm]

Dann ist die lineare Fortsetzung f von g auf V ein Isomorphismus von V und f [mm] \ne id_V [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]