matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorräume, Untervektorräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume, Untervektorräume
Vektorräume, Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume, Untervektorräume: Vereinigung
Status: (Frage) beantwortet Status 
Datum: 00:22 Di 21.07.2009
Autor: mari87

Aufgabe
Es seien V ein K-Vektorraum und U, W zwei Untervektorräume von V, so dass V = U [mm] \cup [/mm] W. Zeigen Sie, dass U = V oder W = V.



Brauche dringend Hilfe. Danke!!!!

Mein Ansatz war bislang einfach nur:
Widerspruchsbeweis, es gibt ein u, das in U liegt, aber nicht in W und ein w, das in W liegt, aber nicht in U...und nun?


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?postid=1008073#post1008073



        
Bezug
Vektorräume, Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 02:11 Di 21.07.2009
Autor: pelzig

Du musst zeigen: "V Vektorraum mit UVR U,W und [mm] $V=U\cup [/mm] W$ sowie [mm] $U\ne [/mm] V$, so ist $W=V$".

Beweis: [mm] $W\subset [/mm] V$ ist klar. Sei also [mm]v\in V[/mm], wir müssen [mm]v\in W[/mm] zeigen. Nach Voraussetzung gibt es [mm] $x\in V\setminus U\subset [/mm] W$, wäre [mm] $v\not\in [/mm] W$, so müsste wegen [mm] $V=U\cup [/mm] W$ gelten [mm]v\in U[/mm]. Nun ist aber $$v=x+(v-x)$$ Der erste Summand liegt in W nach Konstruktion. Der zweite Summand liegt ebenfalls in W, da andernfalls [mm]v-x\in U[/mm] liegen müsste und somit auch $-(v-x)+v=x$, was wir ja per Konstruktion ausgeschlossen hatten. Damit ist aber auch [mm] $v=x+(v-x)\in [/mm] W$ - Widerspruch.

Gruß, Robert

Bezug
        
Bezug
Vektorräume, Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 03:12 Di 21.07.2009
Autor: Marcel

Hallo,

> Es seien V ein K-Vektorraum und U, W zwei Untervektorräume
> von V, so dass V = U [mm]\cup[/mm] W. Zeigen Sie, dass U = V oder W
> = V.
>  
>
>
> Brauche dringend Hilfe. Danke!!!!
>  
> Mein Ansatz war bislang einfach nur:
>  Widerspruchsbeweis, es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...

der Ansatz ist zu korrigieren:
Wenn weder [mm] $U=V\,$ [/mm] noch [mm] $V=\,W$ [/mm] gilt, dann gilt ja:
Es ist
   ($U [mm] \setminus [/mm] V [mm] \not=\emptyset$ [/mm] oder $V [mm] \setminus [/mm] U [mm] \not=\emptyset$) [/mm] und ($V [mm] \setminus [/mm] W [mm] \not=\emptyset$ [/mm] oder $W [mm] \setminus [/mm] V [mm] \not=\emptyset$). [/mm]

Dieser Ansatz wäre weiterzuverfolgen!!

Beachte:
Du hattest oben geschrieben:

> ...es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...

Analysieren wir das mal:
Es ist so, dass, wenn weder $U [mm] \subset [/mm] W$ noch $W [mm] \subset [/mm] U$ gilt, dann gibt es ein $u [mm] \in [/mm] U$ mit $u [mm] \notin [/mm] W$ und ein $w [mm] \in [/mm] W$ mit $w [mm] \notin [/mm] U$. Aber Du sollst ja hier nicht zeigen, dass $U [mm] \subset [/mm] W$ oder $W [mm] \subset [/mm] U$ ist, sondern, dass [mm] $U\blue{=V}$ [/mm] oder [mm] $W\blue{=V}$ [/mm] gilt!

Also: Wie kommst Du, wenn weder [mm] $U=V\,$ [/mm] noch [mm] $W=V\,$ [/mm] gilt, zu:

> ...es gibt ein u, das in U liegt, aber
> nicht in W und ein w, das in W liegt, aber nicht in U...

???


(Edit: Ich sehe es gerade: Wegen $U [mm] \subset [/mm] V$ gibt es, wenn $U [mm] \not=V$ [/mm] ist, ein $w [mm] \in [/mm] V$ mit $w [mm] \notin U\,.$ [/mm] Wegen $V=U [mm] \cup [/mm] W$ muss dann aber $w [mm] \in [/mm] W$ sein. Analog:
Es gibt ein $u [mm] \in [/mm] V$ mit $u [mm] \notin W\,.$ [/mm] Dann muss aber $u [mm] \in [/mm] U$ gelten. Also Deine Folgerung oben ist doch korrekt.)

Und nur zur Klärung von Roberts (Pelzigs) Vorgehensweise:
Behauptet wird oben ja:
Es gilt [mm] $A\,$ [/mm] oder [mm] $B\,$. [/mm] (Aussage [mm] $A:\,$ [/mm] Es gilt [mm] $U=V\,$; [/mm] Aussage [mm] $B:\,$ [/mm] Es gilt [mm] $U=W\,$.) [/mm] Nun gilt
$$A [mm] \vee [/mm] B$$
[mm] $$\gdw$$ [/mm]
[mm] $$\big(\neg(\neg A)\big) \vee [/mm] B$$
[mm] $$\underset{\text{per Definitionem von }'\Rightarrow'}{\gdw}$$ [/mm]
[mm] $$(\star)\;\;\;(\neg [/mm] A) [mm] \Rightarrow B\,.$$ [/mm]

Robert führt also den Beweis von $A [mm] \vee [/mm] B$ gemäß [mm] $(\star)$, [/mm] denn bekanntlich gilt:
Es gilt nicht [mm] $U=V\,$ [/mm] genau dann, wenn $U [mm] \not=V$ [/mm] ist.

P.S.:
Du könntest also auch Deinen Weg weiterverfolgen.

Sei $U [mm] \not=V$ [/mm] und $W [mm] \not=V$. [/mm] Dann gibt es ein $w [mm] \in [/mm] W$ mit $w [mm] \notin U\,,$ [/mm] insbesondere ist also $w [mm] \not=0\,;$ [/mm] wir wählen ein solches [mm] $w\,$ [/mm] und halten es fest.
Ferner wählen wir dann auch ein $u [mm] \in [/mm] U$ mit $u [mm] \notin W,\,$ [/mm] insbesondere ist auch $u [mm] \not=0\,.$ [/mm]
Betrachte nun den Vektor $x:=u+w$ (beachte: Wegen $u [mm] \in [/mm] U [mm] \subset [/mm] V$ und $w [mm] \in [/mm] W [mm] \subset [/mm] V$ ist [mm] $x\,$ [/mm] als Summe zweier Vektoren aus [mm] $V\,$ [/mm] auch wieder in [mm] $V\,$ [/mm] gelegen). Dann gilt $x [mm] \not=0$ [/mm] (Warum?), und Du kannst Dir überlegen, dass $x=u+w [mm] \notin [/mm] (U [mm] \cup [/mm] W)$ gilt. Das wäre der gewünschte Widerspruch.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]