matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorräume & Direkte Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Vektorräume & Direkte Summe
Vektorräume & Direkte Summe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume & Direkte Summe: Korrektur lesen
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 07.01.2005
Autor: Faenol

Hi !

Also ich würd euch gerne bitten, hier mal Korrektur zu lesen:
Übe nämlich "fleißig" und hab mir paar Übungsaufgaben aus dem Netz besorgt und gerechnet:

1)
X ist ein Vektorraum der Dimension n, U,V sind Untervektorräume von X. [mm] U_{0} [/mm] ist folgendermaßen definiert:

[mm] U_{0}:=\{ \delta \in X^{\*} | \delta(u)= \vec{0} \forall u \in U\} [/mm]

Natürlich ist das ein Untervektorraum, aber und da hab ich eigentlich das größte Problem: *schäm*
Muss ich dafür zeigen:  [mm] \alpha, \beta \in X^{\*} \alpha(v)+\beta(v)=0+0=0 \in V_{0} [/mm]
oder v,w [mm] \in [/mm] V [mm] \delta(v)+\delta(w)=0+0=0 \in V_{0} [/mm]

z.z.
i) [mm] dim(U_{0})=dim(W)=dim(U) [/mm]
ii) [mm] (U+V)_{0}=U_{0} \cap V_{0} [/mm]

zu i)
Sei [mm] x_{1},...,x_{r} [/mm] eine Basis von U.
U ist Untervektorraum von X, daher kann diese Basis zu einer Basis von X ergänzt werden: [mm] x_{1},...,x_{r},x_{r+1},...,x_{n} [/mm]
Die zu X zugehörige Dualbasis ist X*: [mm] a^{\*}_{1},...,a_{r}^{\*},a_{r+1}^{\*},...,a_{n}^{\*} [/mm]
Ich möchte nun zeigen, dass [mm] a_{r+1}^{\*},...,a_{n}^{\*} [/mm] eine Basis von [mm] U_{0} [/mm] ist, weil daraus folgen würde:
[mm] dim(U_{0})=n-r=dim(X)-dim(U) [/mm]

linear unabh. sind die Vektoren [mm] a_{r+1}^{\*},...,a_{n}^{\*} [/mm] auf jeden Fall, da sie aus einer Basis stammen, bleibt das Erzeugendensystem zu zeigen:

Zu beweisen ist also:
[mm] U_{0}=span(a_{r+1}^{\*},...,a_{n}^{\*}) [/mm]
Hinrichtung:
[mm] span(a_{r+1}^{\*},...,a_{n}^{\*}) \subset span(a_{1}^{\*},...,a_{r}^{\*},a_{r+1}^{\*},...,a_{n}^{\*}) [/mm]
=> [mm] span(a_{r+1}^{\*},...,a_{n}^{\*}) \subset \in X^{\*} [/mm]
Es gilt also [mm] a_{j}^{\*}(u_{i})=0, [/mm] womit die Bedingung für [mm] U_{0} [/mm] erfüllt ist.

Rückrichtung:
Sei nun  [mm] \delta \in U_{0} [/mm] und
[mm] \delta=\alpha_{1}a_{1}^{\*}+...+\alpha_{r}a_{r}^{\*}+\alpha_{r+1}a_{r+1}^{\*}+...+\alpha_{n}a_{n}^{\*} [/mm]
=> [mm] \delta(u_{i})=\alpha_{1}a_{1}^{\*}(u_{1})+...+\alpha_{r}a_{r}^{\*}(u_{r})+\alpha_{r+1}a_{r+1}^{\*}(u_{r+1})+...+\alpha_{n}a_{n}^{\*}(u_{n})=0 [/mm]
Da [mm] a_{1}^{\*}, [/mm] ...., [mm] a_{n}^{\*}, [/mm] lin. unabh. , daher muss [mm] \alpha_{i}=0 [/mm] sein.

Bis hierhin o.k, ich weiß nur nicht genau, ob ich die Rückrichtung nun komplett gezeigt habe oder ob was fehlt. Warum bedeutet wenn [mm] \alpha_{i}=0 [/mm] sein muss, dass [mm] U_{0} \subset span(a_{r+1}^{\*},...,a_{n}^{\*}) [/mm]

zu ii)
Kann ich hier Linearität von [mm] \delta [/mm] benutzen ?
Es gilt ja für den Dualraum [mm] X^{\*}=L(X,IK) [/mm]
[mm] \delta \in X^{\*} [/mm] (laut Vorrausetzung) =>  [mm] \delta \in [/mm] L(X,IK)
Also eine Lineare Abbildung.
[mm] \delta(u+v)= \delta(u)+\delta(v) [/mm] oder ?

Wem dem so ist, ist die ii) kein Problem :-)

2)
Die Eindeutigkeit der direkten Summe bei mehreren Untervektorräumen [mm] W_{i}'s: [/mm]
z.z ist, dass die Darstellung eines Elements [mm] w=W_{1} \oplus W_{2}\oplus....\oplus W_{n} [/mm] eindeutig ist.

Sei [mm] w=w_{1}+w_{2}+...+w_{n} [/mm]
und [mm] w=w_{1}^{'}+w_{2}^{'}+...+w_{n}^{'} [/mm] eine weitere solche Darstellung:
[mm] w=w_{1}+w_{2}+...+w_{n}=w_{1}^{'}+w_{2}^{'}+...+w_{n}^{'} [/mm]
[mm] <=>\underbrace{w_{1}-w_{1}^{'}}_{\in W_{1}}+\underbrace{w_{2}-w_{2}^{'}}_{\in W_{2}}+...+\underbrace{w_{n-1}-w_{n-1}^{'}}_{\in W_{n-1}}=\underbrace{w_{n}^{'}-w_{n}}_{\in W_{n}} [/mm]
=> w [mm] \in W_{1}+W_{2}+...+W_{n-1} \wedge \in W_{n} [/mm]
=>  w [mm] \in W_{n} \cap (W_{1}+W_{2}+...+W_{n-1}) [/mm] (auch im Schnitt)

Über die Definition der direkten Summe gilt:
[mm] W_{i} \cap W_{i}^{~}=\{ \vec{0}\} [/mm] mit [mm] W_{i}^{~}= \summe_{j=1,i \not=j}^{n}W_{j} [/mm]

=> w=vec{0}
=> [mm] 0=w_{1}+w_{2}+...+w_{n}=w_{1}^{'}+w_{2}^{'}+...+w_{n}^{'} [/mm]

Daraus folgt nun [mm] w_{i}=w_{i}^{'} [/mm] und damit ist w eindeutig.


Danke für's zuhören, drüber schauen und verbessern schon mal im Vorraus !

Faenôl

        
Bezug
Vektorräume & Direkte Summe: Wenigstens UVR-Axiome
Status: (Frage) beantwortet Status 
Datum: 16:31 So 09.01.2005
Autor: Faenol

Hi !

Die Lösung scheint richtig zu sein oder es hat keiner Zeit ! *g*

Aber zu den UVR's würd ich schon noch gern eine Antwort haben:

> X ist ein Vektorraum der Dimension n, U,V sind
> Untervektorräume von X. [mm]U_{0}[/mm] ist folgendermaßen
> definiert:
>  
> [mm]U_{0}:=\{ \delta \in X^{\*} | \delta(u)= \vec{0} \forall u \in U\} [/mm]
>  
>
> Natürlich ist das ein Untervektorraum, aber und da hab ich
> eigentlich das größte Problem: *schäm*
>  Muss ich dafür zeigen:  

1. [mm]\alpha, \beta \in X^{\*} \alpha(u)+\beta(u)=0+0=0 \in U_{0}[/mm]

>
> oder

2. v,w [mm]\in[/mm] U [mm]\delta(v)+\delta(w)=0+0=0 \in U_{0}[/mm]


Bei diesen Sachen, hab ich immer Probleme.
Was muss ich nehmen 1 oder 2 ?

thanx

Faenôl

Bezug
                
Bezug
Vektorräume & Direkte Summe: Antwort (Versuch)
Status: (Antwort) fertig Status 
Datum: 18:55 So 09.01.2005
Autor: DaMenge

ich muss gleich sagen, dass Dualräume nicht mein Lieblingsthema waren und dies auch schon etwas zurück liegt, deshalb bitte folgendes mit Vorsicht genießen !!

Also: $ [mm] U_{0} [/mm] $ ist der Raum von Abbildungen, die auf U als Nullabbildung wirken, richtig? (in der Definition nicht den Nullvektor, sondern nur die Null aus K)

wenn ich mich recht erinnere sind die Elemente des Dualraumes als Zeilenvektoren schreibbar, so dass $ [mm] \delta(u)= (\delta_{1} ,...,\delta_{n} )*\vektor{u_{1} \\ ...\\u_{n}} [/mm] $
dementsprechend wäre eine Addition im Dualraum nur eine komponenten Weise Addition in den Zeilenvektoren.

so, jetzt wähle man eine Basis von U und ergänze diese zu einer Basis von X, dann muss man einfach nur (für additive Abgeschlossenheit) zeigen , dass :
$ [mm] (\delta [/mm] + [mm] \beta [/mm] )(u)=0 [mm] \quad\forall u\in [/mm] U $
wobei man davon ausgehen kann, dass die ersten paar (=dimU)Komponenten von Delta und Beta gleich Null sind.

aber wie gesagt : weiß nicht, ob ich das alles noch richtig n Erinnerung habe - lieber nochmal mit den Definitionen vergleichen.

viele Grüße
DaMenge

Bezug
                        
Bezug
Vektorräume & Direkte Summe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:34 So 09.01.2005
Autor: Faenol

Hi !

Erstmal Danke daMenge !

Aber so ganz genau hab ich net verstanden, wodrauf du dich beziehst (außer auf Dualräume).

Das man den Dualraum so schreiben kann, wußte ich net, aber es kommt mir irgendwie doch bekannt vor, daher sagen wir, dass es stimmt ! *g*

Du hast ja angedeutet, dass man [mm] (\alpha+\delta)(u)=0 [/mm] zeigen müßte.
Das bezieht sich jetzt auf die Untervektorraum-Bedingung 2 (Abgeschlossen der Additivität) ?

[mm] (\alpha+\delta)(u)=(\alpha_{1}+\delta_{1},....,\alpha_{n}+\delta_{n})* \vektor{u_{1} \\... \\ u_{n}} [/mm]

= [mm] (\alpha_{1}+......+\alpha_{n})*\vektor{u_{1} \\... \\ u_{n}}+(\delta_{1},....,+\delta_{n})*\vektor{u_{1} \\... \\ u_{n}} [/mm]
=0+0=0 [mm] \in U_{0} [/mm]

hmm, wo man wieder Linearität in der Additivät hätte...
Das unterstützt ja meine These, dass [mm] \delta(u) [/mm] wirlklich linear ist (siehe erstes Posting)

Meinst du das ? Oder wodrauf beziehst du dich ? ;-)
Ich mag auch keine Dualräume.......

Danke !

Faenôl

Bezug
                                
Bezug
Vektorräume & Direkte Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 09.01.2005
Autor: DaMenge

Hi, ähm gleich mal eine Verbesserung wegen der Basisergänzung von U:
$ [mm] (\alpha+\delta)(u)=(\alpha_{1}+\delta_{1},....,\alpha_{n}+\delta_{n},...,\alpha_{r}+\delta_{r})\cdot{} \vektor{u_{1} \\... \\ u_{n}\\0\\...\\0} [/mm] $

Das wäre die richtige Darstellung bzgl. der Basis, die ich vorgeschlagen hatte - ich hatte oben den Fehler auch schon gemacht - sorry !
(das heißt die restlichen r Komponenten sind frei wählbar und simpel mit einer Basis darstellbar)

Aber im Grunde meinte ich es so, wie du es aufgefast hast.
Wenn die Addition und die Anschauung als Zeilenvektor wirklich so stimmt, folgt die Linearität leicht. Jedoch weiß ich nicht mehr 100% ob dies stimmt.

wesentlich mehr kann ich dir dazu wirklich nicht sagen...
(muss jetzt auch weg)
viele Grüße
DaMenge

Bezug
        
Bezug
Vektorräume & Direkte Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 09.01.2005
Autor: DaMenge

zu den Dualräumen kann ich wie bereits erwähnt nicht viel sagen, das was du geschrieben hast, sieht für mich gut aus - vielleicht ein bisschen umständlich, aber naja.

zu 2) wenn du n UVRs hast, kannst du doch induktiv eine Basis von ganz V ergänzen über die einzelnen UVR-Basen - und dass eine Basisdarstellung eindeutig ist, ist simpel
(angenommen dem wäre nicht so, dann hättest du sofort ein nicht-triviale Darstellung der 0 => linear abhängig)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]