matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume
Vektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 01:25 So 19.10.2008
Autor: christin0306

Aufgabe
Bewiesen sie, dass in einem K vektorraum V gilt:
a) [mm] \alpha [/mm] . 0=0 für alle [mm] \alpha \varepsilon [/mm] K und den Nullvektor [mm] 0\varepsilon [/mm]  V
b) [mm] \alpha \varepsilon [/mm] K, [mm] \alpha \varepsilon [/mm] V, [mm] \alpha [/mm] x v =0 [mm] \Rightarrow \alpha [/mm] =0 oder v = 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


<Könnt ihr mir sagen was hier von mir gewollt ist, bzw. könnt ihr mir einen Lösungsansatz geben. Hab mich bisher ein wenig mit Körpern beschäfftigt aber das bekomm ich leider nicht hin.
Danke Christin

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 02:16 So 19.10.2008
Autor: pelzig

a) [mm] $a\cdot 0=a\cdot(0+0)=a\cdot 0+a\cdot [/mm] 0$. Warum gilt das? Wie lässt sich damit die Behauptung zeigen?
b) Mache eine Fallunterscheidung. Erster Fall: a=0, zweiter Fall [mm] $a\ne [/mm] 0$.

Gruß, Robert

Bezug
                
Bezug
Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 So 19.10.2008
Autor: christin0306

Ich habe leider keinen durchblick wie man diese beweis satz dinger schreibt..! sorry.kann man mir da nochmal helfen.> a) [mm]a\cdot 0=a\cdot(0+0)=a\cdot 0+a\cdot 0[/mm]. Warum gilt das?
> Wie lässt sich damit die Behauptung zeigen?



Bezug
                        
Bezug
Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:09 So 19.10.2008
Autor: pelzig


> > a) [mm]a\cdot 0=a\cdot(0+0)=a\cdot 0+a\cdot 0[/mm]. Warum gilt das?
> > Wie lässt sich damit die Behauptung zeigen?
> Ich habe leider keinen durchblick wie man diese beweis satz dinger schreibt..!

"beweis satz dinger"? Du meinst wie man Beweise schreibt? Ja da hilft nur Beweise lesen, verstehen und viel üben üben üben.
Ihr habt doch sicher die Vektorraumaxiome behandelt, das sind die Sachen die du benutzen darfst - mehr nicht. Zum Beispiel gibt es ja das Axiom

"Es gibt einen Vektor [mm] $0\in [/mm] V$, sodass für alle Vektoren [mm] $v\in [/mm] V$ gilt: $0+v=v$."

Daraus folgt insbesondere $0+0=0$, deshalb gilt das erste Gleichheitszeichen in meiner obigen Kette.
Jetzt musst du mal überlegen mit wechem Axiom du das zweite Gleichheitszeichen begründen musst, und dann fehlt dir noch der entscheidende Schluss, warum dann [mm] $a\cdot [/mm] 0=0$ ist. Aber du musst unbedingt versuchen selbst darauf zu kommen! Beweise sind i.A. keine Rechenaufgaben wo man nur ein "Kochrezept" ausführen muss, sondern man muss kreativ die Dinge kombinieren die man hat.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]