matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Vektorprodukt
Vektorprodukt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorprodukt: Rechtssystem bei Vektorprodukt
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 17.06.2006
Autor: Eschi

Aufgabe
Drei (paarweise nicht parallele) Vektoren im [mm] R^3 [/mm] definieren einen Tetraeder. Zeigen Sie: Wird jeder der vier Tetraederflächen ein "nach außen" zeigender Normalenvektor (d.h. ein auf der jeweiligen Fläche senkrecht stehender Vektor) zugeordnet, dessen Länge dem jeweiligen Flächeninhalt entspricht, so verschwindet die Summe dieser 4 Vektoren. Hinweis: Beachten Sie die Rechtsystemeigenschaft des Vektorproduktes!  

Hallo. Ich weiß das ich da irgendwas mit dem Kreuzprodukt allgemein schreiben muss, aber ich bekomme nur lange umformungen hin. Kann mir einer mal eine Lösung anbieten!

Ich danke Euch







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 17.06.2006
Autor: Leopold_Gast

Nimm an, daß die das Tetraeder aufspannenden Vektoren [mm]\vec{x},\vec{y},\vec{z}[/mm] ein Rechtssystem bilden. Bekanntermaßen berechnet [mm]\frac{1}{2} \, \left| \vec{x} \times \vec{z} \right|[/mm] den Flächeninhalt der von [mm]\vec{x},\vec{z}[/mm] aufgespannten Dreiecksfläche. Die Vektoren [mm]\vec{x},\vec{z}, \frac{1}{2} \, \vec{x} \times \vec{z}[/mm] bilden ein Rechtssystem. Folglich zeigt [mm]\frac{1}{2} \vec{x} \times \vec{z}[/mm] nach außen (ansonsten hätten wir [mm] \vec{x},\vec{z} [/mm] vertauschen müssen). Es ist also der erste gesuchte Vektor.

[Dateianhang nicht öffentlich]

Und jetzt finde analog die anderen drei. Vorsicht! Hier kommt es entscheidend auf die Reihenfolge der Faktoren beim Vektorprodukt an!

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Vektorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 So 18.06.2006
Autor: Eschi

Danke für die Hilfe, aber ich stehe momentan nebenmir was deine Antwort betrifft.  Was ist den jetzt der eigentliche Vektor?, kannst du deinen Weg bitte nochmal ausführlicher beschreiben? Danke

Bezug
                        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 18.06.2006
Autor: Leopold_Gast

[mm]\frac{1}{2} \, \vec{x} \times \vec{z}[/mm] ist der Vektor, der auf der linken vorderen Seite des Tetraeders senkrecht steht, nach außen zeigt (also nicht in das Tetraeder hinein) und genau die Maßzahl als Länge hat, die die Dreiecksfläche als Inhalt besitzt (dafür sorgt der Faktor [mm]\frac{1}{2}[/mm], der ansonsten unwichtig ist).

Ich mache noch einen Teil der Aufgabe für dich, den Rest solltest du aber selbst erledigen.

Wie sieht der Vektor aus, der auf der Grundseite des Tetraeders, also der von [mm]\vec{x} ,\vec{y}[/mm] aufgespannten Dreiecksseite, senkrecht steht und die weiteren geforderten Eigenschaften besitzt?

In Frage kommen [mm]\vec{x} \times \vec{y}[/mm] oder [mm]\vec{y} \times \vec{x}[/mm]. Um die Länge kümmern wir uns vorerst nicht.

[mm]\vec{x},\vec{y},\vec{x} \times \vec{y}[/mm] bilden ein Rechtssystem (das ist immer so). Du mußt jetzt das Dreibein mit den umkreisten 1,2,3 so in die Figur hineindenken, daß der Vektor 1 auf [mm]\vec{x}[/mm] und der Vektor 2 auf [mm]\vec{y}[/mm] fällt. Und dann siehst du, daß der Kreuzproduktvektor nach oben zeigt, also in das Tetraeder hinein. Damit ist [mm]\vec{x} \times \vec{y}[/mm] der falsche Vektor. Richtig ist also [mm]\vec{y} \times \vec{x}[/mm] oder gleichbedeutend [mm]- \vec{x} \times \vec{y}[/mm] (wenn du jetzt das Dreibein in die Figur legst, muß 1 wie [mm]\vec{y}[/mm] und 2 wie [mm]\vec{x}[/mm] zeigen, du mußt es also um 180° drehen). Und mit der entsprechenden Länge ist dann

[mm]\frac{1}{2} \, \vec{y} \times \vec{x} = - \frac{1}{2} \, \vec{x} \times \vec{y}[/mm]

der gesuchte Vektor.

Und mit der Rückseite des Tetraeders, die von den Vektoren [mm]\vec{y},\vec{z}[/mm], und der rechten vorderen Seite, die von den Vektoren [mm]\vec{y} - \vec{x}, \vec{z} - \vec{x}[/mm] aufgespannt wird, geht es entsprechend. Wenn die eine Reihenfolge beim Kreuzprodukt nicht die richtige ist, muß es halt die andere sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]